Skip to main content
Log in

A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The dictyoceratid marine sponge Dysidea herbacea (Keller, 1889) is common in shallow waters of the tropical Pacific Ocean. Polybrominated biphenyl ethers such as 2-(2′,4′-dibromophenyl)-4,6-dibromophenol (1) are characteristic secondary metabolites of some specimens of this sponge and may represent as much as 12% of the dry weight. We have found 1 to be deposited as conspicuous crystals throughout the sponge tissue. The dominant prokaryotic endosymbiont in the mesohyl of the sponge is a filamentous cyanobacterium (Oscillatoria spongeliae), although a vacuole-containing, heterotrophic bacterium is also present. The cyanobacteria were separated from the sponge cells and heterotrophic bacteria by flow cytometry. Coupled gas chromatography—mass spectrometry and proton nuclear magnetic-resonance spectroscopy revealed that the major brominated Compound 1 isolated from the intact symbiotic association is found in the cyanobacteria and not in the sponge cells or heterotrophic bacteria. This suggests that the production of the compound is due to the cyanobacterium, and not to the sponge or symbiotic heterotrophic bacteria, as had been suggested earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amann R, Springer N, Ludwig W, Görtz H-D, Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature, Lond 351:161–164

    Google Scholar 

  • Ashworth RB, Cormier MJ (1967) Isolation of 2,6-dibromophenol from the marine hemichordate Balanoglossus biminiensis. Science, NY 155:1558–1559

    Google Scholar 

  • Bergquist PR (1965) The sponges of Micronesia. Part I. The Palau archipelago. Pacif Sci 19:123–204

    Google Scholar 

  • Bergquist PR (1980) A revision of the supraspecific classification of the orders Dictyoceratida, Dendroceratida, and Verongida (class Demospongiae). NZ J Zool 7:443–503

    Google Scholar 

  • Bergquist PR, Wells RJ (1983) Chemotaxonomy of the Porifera: the development and current status of the field: In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives. Vol V. Academic Press, New York, p 1–50

    Google Scholar 

  • Berthold RJ, Borowitzka MA, Mackay MA (1982) The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327–335

    Google Scholar 

  • Braekman JC, Daloze D, Deneubourg F, Lippert E, Van Sande J (1990) Les métabolites hexachlorés de Dysidea herbacea: dérivés modèles pour la synthèse d'inhibiteurs spécifiques du transport de l'iodide dans les cellules de la glande thyroïde. New J Chem 14:705–711

    Google Scholar 

  • Capon R, Ghisalberti EL, Jefferies PR, Skelton BW, White AH (1981) Structural studies of halogenated diphenyl ethers from a marine sponge. J chem Soc Perkin Trans (I: Org bio-org Chem) 2464–2467

  • Cardellina JH, II, Marner F-J, Moore RE (1979) Malyngamide A, a novel chlorinated metabolite of the marine cyanophyte Lyngbya majuscula. J Am chem Soc 101:240–242

    Google Scholar 

  • Carmely S, Cojocaru M, Loya Y, Kashman Y (1988) Ten new rearranged spongian diterpenes from two Dysidea species. J org Chem 53:4801–4807

    Google Scholar 

  • Carté B, Faulkner DJ (1981) Polybrominated diphenyl ethers from Dysidea herbacea, Dysidea chlorea, and Phyllospongia foliascens. Tetrahedron 37:2335–2339

    Google Scholar 

  • Charles C, Brackman JC, Daloze D, Tursch B, Declercq JP, Germain G, Van Meerssche M (1978a) Chemical studies of marine invertebrates. XXXIV. Herbadysidolide and herbasolide, two unusual sesquiterpenoids from the sponge Dysidea herbacea. Bull Soc chim Belg 87:481–486

    Google Scholar 

  • Charles C, Braekman JC, Daloze D, Tursch B, Karlsson R (1978b) Chemical studies of marine invertebrates. XXXII. Isodysidenin, a further hexachlorinated metabolite from the sponge Dysidea herbacea. Tetrahedron Lett 1519–1520

  • Dunlop RW, Kazlauskas R, March G, Murphy PT, Wells RJ (1982) New furano-sesquiterpenes from the sponge Dysidea herbacea. Aust J Chem 35:95–103

    Google Scholar 

  • Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev SA (1991) Brominated diphenyl ethers form a marine bacterium associated with the sponge Dysidea sp. Experientia 47:632–633

    Google Scholar 

  • Faulkner DJ (1984) Marine natural products: metabolites of marine invertebrates. Nat Product Rep 1:551–598

    Google Scholar 

  • Faulkner DJ (1986) Marine natural products. Nat Product Rep 3: 1–33

    Google Scholar 

  • Faulkner DJ (1986) Marine natural products. Nat Product Rep 4: 539–576

    Google Scholar 

  • Faulkner DJ (1988) Marine natural products. Nat Product Rep 5: 613–663

    Google Scholar 

  • Faulkner DJ (1990) Marine natural products. Nat Product Rep 7: 269–309

    Google Scholar 

  • Faulkner DJ (1990) Marine natural products. Nat Product Rep 9: 323–364

    Google Scholar 

  • Feldmann J (1933) Sur quelques cyanophycées vivant dans le tissu des éponges de Banyuls. Archs Zool exp gén 75:381–404

    Google Scholar 

  • Fusetani N, Sugano M, Matsunaga S, Hashimoto K, Shikama H, Ohta A, Nagano H (1987) Isolation of a hexaprenylhydroquinone sulfate from the marine sponge Dysidea sp. as an H,K-ATPase inhibitor. Experientia 43:1233–1234

    Google Scholar 

  • Hauck F (1879) Beiträge zur Kenntniss der adriatischen Algen. Öst bot Z 29:243–245

    Google Scholar 

  • Higa T, Sakemi S-I (1983) Environmental studies on natural halogen compounds. I. Estimation of biomass of the acorn worm Ptychodera flava Eschscholtz (Hemichordata: Enteropneusta) and excretion rate of metabolites at Kattore Bay, Kohama, Island, Okinawa. J chem Ecol 9:495–501

    Google Scholar 

  • Hirsch S, Rudi A, Kashman Y (1991) New avarone and avarol derivatives from the marine sponge Dysidea cinerea. J nat Products 54:92–97

    Google Scholar 

  • Hofheinz W, Oberhänsli WE (1977) Dysidin, ein neuartiger, chlorhaltiger Naturstoff aus dem Schwamm Dysidea herbacea. Helv chim Acta 60:660–669

    Google Scholar 

  • Kashman Y, Zviely M (1980) Furospongolide, a new C21 furanoterpene from a marine organism. Experientia 36:1279–1280

    Google Scholar 

  • Kazlauskas R, Lidgard RO, Wells RJ (1977) A novel hexachlorometabolite from the sponge Dysidea herbacea. Tetrahedron Lett 3183–3186

  • Kazlauskas R, Murphy PT, Wells RJ (1978a) A diketopiperazine derived from trichloroleucine from the sponge Dysidea herbacea. Tetrahedron Lett 4945–4948

  • Kazlauskas R, Murphy PT, Wells RJ (1978b) A new sesquiterpene from the sponge Dysidea herbacea. Tetrahedron Lett 4949–4950

  • Keller C (1889) Die Spongienfauna des Rothen Meeres. Z wiss Zool 48:311–405

    Google Scholar 

  • Larkum AWD, Cox GC, Hiller RG, Parry DL, Dibbayawan TP (1987) Filamentous cyanophytes containing phycourobilin and in symbiosis with sponges and an ascidian of coral reefs. Mar Biol 95: 1–13

    Google Scholar 

  • Mancini I, Guella G, Guerriero A, Boldrin A, Pietra F (1987) Adriadysiolide, the first monoterpenoid isolated from a marine sponge. Helv chim Acta 70:2011–2018

    Google Scholar 

  • Minale L (1978) Terpenoids from marine sponges. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives. Vol. I. Academic Press, New York, p 175–240

    Google Scholar 

  • Minale L, Riccio R, Sodano G (1974) Avarol, a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Disidea [sic] avara. Tetrahedron Lett 3401–3404

  • Norton RS, Croft KD, Wells RJ (1981) Polybrominated oxydiphenol derivatives from the sponge Dysidea herbacea. Structure determination by analysis of 13C spin-lattice relaxation data for quaternary carbons and 13C−1H coupling constants. Tetrahedron 37:2341–2349

    Google Scholar 

  • Salvá J, Faulkner DJ (1990) A new brominated diphenyl ether from a Philippine Dysidea species. J nat Products 53:757–760

    Google Scholar 

  • Santavy DL (1985) The symbiotic relationship between a blue-pigmented bacterium and the coral reef sponge, Terpios granulosa. Proc 5th int coral Reef Congr 5:135–140 [Gabrié C et al (eds) Antenne Museum-EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Santavy DL (1988) Marine bacteria-invertebrate symbiosis: the Caribbean sclerosponge Ceratoporella nicholsoni as a paradigm. Doctoral dissertation. University of Maryland, College Park, Maryland

    Google Scholar 

  • Schmidt S, Wittich R-M, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl envirl Microbiol 58:2744–2750

    Google Scholar 

  • Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bact 173:4371–4378

    Google Scholar 

  • Schulze FE (1879) Untersuchungen über den Bau und die Entwicklung der Spongien. Sechste Mittheilung. Die Gattung Spongelia. Z wiss Zool 32:117–157

    Google Scholar 

  • Sharma GM, Vig B (1972) Studies on the antimicrobial substances of sponges. VI. Structures of two antibacterial substances isolated from the marine sponge Dysidea herbacea. Tetrahedron Lett 1715–1718

  • Stierle AC, Cardellina JH, II, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44:1021–1022

    Google Scholar 

  • Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49:349–353

    Google Scholar 

  • Utkina NK, Kazantseva MV, Denisenko VA (1987) Brominated diphenyl ethers from the marine sponge Dysidea fragilis. [In Russ] Khimiya prior soed 4:603–605

    Google Scholar 

  • Vacelet J (1975) Étude en microscopie électronique de l'association entre bactéries et spongiaires du genre Veronigia (Dictyoceratida). J Microscopie Biol cell 23:271–288

    Google Scholar 

  • Vacelet J (1981) Algal-sponge symbioses in the coral reefs of New Caledonia: a morphological study. Proc 4th int coral Reef Symp 2:713–719 [Gomez ED, et al (eds) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]

    Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J exp mar Biol Ecol 30:301–314

    Google Scholar 

  • Voinov VG, El'kin YN, Kuznetsova TA, Mal'tsev II, Mikhailov VV, Sasunkevich VA (1991) Use of mass spectroscopy for the detection and identification of bromine-containing diphenyl ethers. J Chromat 586:360–362

    Google Scholar 

  • Walker RP, Faulkner DJ (1981) Diterpenes from the sponge Dysidea amblia. J org Chem 46:1098–1102

    Google Scholar 

  • Wilkinson CR (1978a) Microbial associations in sponges. I. Ecology, physiology, and microbial populations of coral reef sponges. Mar Biol 49:161–167

    Google Scholar 

  • Wilkinson CR (1978b) Microbial association in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176

    Google Scholar 

  • Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress Ltd, Bristol, p 111–151

    Google Scholar 

  • Wilkinson CR, Garrone R (1980) Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Smith DC, Tiffon Y (eds) Nutrition in the lower metazoa. Pergamon Press, Oxford, p 157–161

    Google Scholar 

  • Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unson, M.D., Holland, N.D. & Faulkner, D.J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Marine Biology 119, 1–11 (1994). https://doi.org/10.1007/BF00350100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350100

Keywords

Navigation