Skip to main content
Log in

Microbial and biochemical characterization of a bacterial consortium isolated from decaying wood by growth on a β-O-4 lignin-related dimeric compound

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

As an approach to evaluate the contribution of bacteria to lignin degradation in wood, we have chosen to study these microorganisms in the natural wood decay ecosystem known as Palo Podrido. Initially, the characterization of bacteria able to metabolize lignin-related compounds present in samples of Palo Podrido was undertaken. For their isolation, minimal salt media containing lignin dimers of either the arylglycerol-β-aryl ether (β-O-4) or 1,2-diarylpropane (β-1) types as the only source of carbon and energy were inoculated with various wood samples exhibiting different degrees of decay. The β-1 dimers used failed to support bacterial growth. However, three bacterial consortia able to consume quantitatively the β-O-4 model 1-[3,4-dimethoxyphenyl]-2-[2-methoxyphenoxy]-3-hydroxypropanone (compound 1) were isolated. One of these was further characterized. It is composed of eight strains belonging to the families of Streptomycetaceae, Dermatophilaceae and Actinoplanaceae. HPLC and GC-MS analyses revealed that the consortium utilizes two pathways to degrade β-O-4 dimers, both involving direct cleavage of the ether linkage. The formation of a novel C6−C3 degradation intermediate is described. Some metabolic properties of each strain, as well as those of the intact consortium, are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AdlerE, LindgrenBO, SaedenU (1952) The β-guaiacyl ether of α-veratrylglycerol as a lignin model. Svensk Papperstidn 15: 245–253

    Google Scholar 

  • AgosinE, BlanchetteRA, SilvaH, LapierreC, CeaseKR, IbachRE, AbadA, MugaP (1990) Characterization of Palo Podrido: a natural process of delignification in wood. Appl Environ Microbiol 56: 65–74

    Google Scholar 

  • BennerR, NewellS, MaccubbinE, HodsonR (1984) Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl Environ Microbiol 48: 36–40

    Google Scholar 

  • BennerR, MoranMA, HodsonRE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnol Oceanogr 31: 89–100

    Google Scholar 

  • BlandCE, CouchJN (1981) The familiy Actinoplanaceae. In: StarrMP, StolpH, TruperHG, BalowsA, SchlegelHG (eds) The prokaryotes. Springer Berlin Heidelberg New York, Vol. II, pp 2004–2010

    Google Scholar 

  • BuchananRE, GibbonsNE (1974) Bergey's manual of determinative bacteriology 8th edn. Williams and Wilkins, Baltimore, USA

    Google Scholar 

  • CrawfordDL (1981) Microbial conversion of lignin to useful chemicals using a lignin-degrading Streptomyces. Biotechnol. Bioeng. Symp 11: 275–291

    Google Scholar 

  • DanielG, NilssonT, SinghA (1987) Degradation of lignocellulosics by unique tunnel-forming bacteria. Can J Microbiol. 33: 943–948

    Google Scholar 

  • DillI, KraepelinG (1986) Palo Podrido: model for extensive delignification of wood by Ganoderma applanatum. Appl Environ Microbiol 52: 1305–1312

    Google Scholar 

  • ErikssonKE, KolarMC, LjungquistPO, KringstadKP (1985) Studies on microbial and chemical conversions of chlorolignins. Environ Sci Technol 19: 1219–1224

    Google Scholar 

  • GonzálezA, GrinsbergJ, GrivaE (1986) Biological transformation of wood into feed for cattle-Pado Podrigo, Zentralbl Mikrobiol 141: 181–186

    Google Scholar 

  • GonzálezB, MerinoA, AlmeidaM, VicuñaR (1986) Comparative growth of natural bacterial isolates on various lignin-related compounds. Appl Environ Microbiol 52: 1428–1432

    Google Scholar 

  • GonzálezB, OlaveI, CalderónI, VicuñaR (1988) Degradation of diarylethane structures by Pseudomonas fluorescens biovar I. Arch Microbiol 149: 389–394

    Google Scholar 

  • GonzálezA, MartinezA, AlmendrosG, GrinsbergJ (1989) A study of yeasts during the delignification and fungal transformation of wood into cattle feed in chilean rain forest. Antonie van Leeuwenhock 55: 231–236

    Google Scholar 

  • HiltonM, CainW (1990) Bioconversion of cinnamic acid to acetophenone by a pseudomonad: microbial production of a natural flavor compound. Appl Environ Microbiol 56: 623–627

    Google Scholar 

  • KirkTK, FarrellR (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 412: 465–505

    Google Scholar 

  • KondoR, IlmoriT, ImamuraH (1988a) Enzymatic synthesis of glucosides of monomeric lignin model compounds with commertial β-glucosidase. Mokuzai Gakkaishi 34: 724–731

    Google Scholar 

  • KondoR, IlmoriT, ImamuraH (1988b) Bioconversion of a lignin model compound into its glucoside during the hydrolysis of cellobiose by mycelia of wood-rotting fungi. Mokuzai Gakkaishi 36: 501–505

    Google Scholar 

  • KutznerHJ (1981) The family Streptomycetaceae. In: StarrMP, StolpH, TruperHG, BalowsA, SchlegelHG (eds). The prokaryotes. Springer Vol. II, Berlin Heidelberg New York, pp 2028–2090

    Google Scholar 

  • LanducciLL, GeddesSA, KirkTK (1981) Synthesis of 14C-labeled 3-methyoxy-4-hydroxy-α-(2-methoxyphenoxy)-β-hydroxypropiophenone, a lignin model compound. Holzforschung 35: 67–70

    Google Scholar 

  • LuedemannGM (1968) Geodermatophilus: a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 196: 1848–1858

    Google Scholar 

  • LundquistK, KirkTK (1980) Fractionation-purification of an industrial Kraft lignin. Tappi J 63: 80–82

    Google Scholar 

  • MartńezAT, BarrasaJM, PrietoA, BlancoMN (1991) Fatty acid composition and taxonomic status of Ganoderma australis from southern Chile Mycol Res 95: 782–784

    Google Scholar 

  • NeilsonAH, LindgrenC, HynningP-A, RembergerM (1988) Methylation of halogenated phenols and thiophenols by cell extracts of gram-positive and gram-negative bacteria. Appl Environ Microbiol 54: 524–530

    Google Scholar 

  • PhillippiF (1893) Die Pilze Chiles, soweit dieselben als Nahrungsmittel gebraucht werden. Herdwigia 32: 115–118

    Google Scholar 

  • RamachandraM, CrawfordD, HertelG (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54: 3057–3063

    Google Scholar 

  • RobertsDS (1981) The family Dermatophilacaea. In: StarrMP, StolpH, TruperHG, BalowsA, SchlegelHG (eds) The prokaryotes. Springer Vol. II, Berlin Heidelberg New York, pp 2011–2015

    Google Scholar 

  • RüttimannC, SeelenfreundD, VicuñaR (1987) Metabolism of low molecular weight lignin-related compounds by Streptomyces viridosporus T7A. Enzyme Microbial Technol 9: 526–530

    Google Scholar 

  • RüttimannC, VicuñaR, MozuchM, KirkTK (1991) Limited bacterial mineralization of fungal degradation intermediates of synthetic lignin. Appl. Environ Microbiol 57: 3652–3655

    Google Scholar 

  • SamejimaM, SaburiY, YoshimotoT, FukuzumiT, NakazawaT (1985) Catabolic pathway of guaiacylglycerol-β-guaiacyl ether by Pseudomonas sp. TMY 1009. Mokuzai Gakkaishi 31: 956–958

    Google Scholar 

  • Samejima M, Abe S, Habu N, Tatarazako N, Yoshimoto T (1987) Biodegradation pathway and mechanism of lignin-related compounds with β-aryl ether linkage by Pseudomonas paucimiobilis TMY 1009. Abstracts of the Fourth International Symposium on Wood and Pulping Chemistry, Paris. pp 297–300

  • SeelenfreundD, LapierreC, VicuñaR (1990) Production of soluble lignin-rich fragments (APPL) from wheat lignocellulose by Streptomyces viridosporus and their partial metabolism by natural bacterial isolates. J Biotechnol 13: 145–158

    Google Scholar 

  • SinghAP, DrysdaleJA, ButcherJA (1988) Transmission electron microscopic evidence of the wood degrading activity of actinomycete-like organisms. Holzforschung 42: 277–279

    Google Scholar 

  • TienM, KerstenPJ, KirkTK (1987) A potential strategy for selecting and improving lignin-degrading microbes based on lignin model aminoacid adducts. Appl Environ Microbiol 53: 242–245

    Google Scholar 

  • TienM, MyerS (1990) Selection and characterization of mutants of Phanerochaete chrysosporium exhibiting ligninolytic activity under nutrient-rich conditions. Appl Environ Microbiol 56: 2540–2544

    Google Scholar 

  • VicuñaR, GonzálezB, MozuchM, KirkTK (1987) Metabolism of lignin model compounds of the arylglycerol-β-aryl ether type by Pseudomonas acidovorans D3. Appl Environ Microbiol 53: 2605–2609

    Google Scholar 

  • VicuñaR (1988) Bacterial degradation of lignin. Enzyme Microbial Technol 10: 645–708

    Google Scholar 

  • VicuñaR, GonzálezB, SalasL (1990) Metabolism of lignin-related dimeric structures by Pseudomonas fluorescens biovar I. In: KirkTK, ChangHM (eds) Biotechnology in pulp and paper manufacture. Butterworth-Heinemann, Boston, pp 505–512

    Google Scholar 

  • WaksmannSA (1961) The actinomycetes, vol. II. Williams and Wilkins, Baltimore, USA, pp 327–334

    Google Scholar 

  • WaksmannSA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • ZimmermannW, UmezawaT, BrodaP, HiguchiT (1988) Degradation of a non-phenolic arylglycerol-β-aryl ether by Streptomyces cyaneus. FEBS Lett 239: 5–7

    Google Scholar 

  • ZimmermannW (1990) Degradation of lignin by bacteria. J Biotechnol 13: 119–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Céspedes, R., Salas, L., Calderón, I. et al. Microbial and biochemical characterization of a bacterial consortium isolated from decaying wood by growth on a β-O-4 lignin-related dimeric compound. Arch. Microbiol. 158, 162–170 (1992). https://doi.org/10.1007/BF00290811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290811

Keywords

Navigation