Skip to main content
Log in

Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina

Archives of Microbiology Aims and scope Submit manuscript

Abstract

Purple sulfur bacteria store sulfur as intracellular globules enclosed by a protein envelope. The proteins associated with sulfur globules of Chromatium vinosum and Thiocapsa roseopersicina were isolated by extraction into 50% aqueous acetonitrile containing 1% trifluoroacetic acid and 10 mM dithiothreitol. The extracted proteins were separated by reversed-phase HPLC, revealing three major proteins from C. vinosum and two from T. roseopersicina. All of these proteins have similar, rather unusual amino acid compositions, being rich in glycine and aromatic amino acids, particularly tyrosine. The molecular masses of the C. vinosum proteins were determined to be 10,498, 10,651, and 8,479 Da, while those from T. roseopersicina were found to be 10,661 and 8,759 Da by laser desorption time-of-flight mass spectrometry. The larger T. roseopersicina protein is N-terminally blocked, probably by acetylation, but small amounts of the unblocked form (mass = 10,619) were also isolated by HPLC. Protein sequencing showed that the two larger C. vinosum proteins are homologous to each other and to the large T. roseopersicina protein. The 8,479 Da C. vinosum and 8,759 Da T. roseopersicina proteins are also homologous, indicating that sulfur globule proteins are conserved between different species of purple sulfur bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

BNPS-skatole 2:

(2-Nitrophenylsulfenyl)-3-methyl-3-bromoindolenine

CNB :

Cyanogen bromide

Cv1, Cv2, and Cv3 :

Chromatium vinosum sulfur globule proteins

SGP and SGPs :

Sulfur globule protein(s)

TFA :

Trifluoroacetic acid

Tr0, Tr1, and Tr2 :

Thiocapsa roseopersicina sulfur globule proteins

References

  • Aitken A, Giesow MJ, Findlay JBC, Holmes C, Yarwood A (1989) Peptide preparation and characterization. In: Findlay JBC, Giesow MJ (eds) Protein sequencing, a practical approach. IRL Press, Oxford pp 43–68

    Google Scholar 

  • Bobek LA, LoVerde PT, Rakosh DM (1989) Schistosoma haematobium: analysis of eggshell protein genes and their expression. Exp Parasitol 68:17–30

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221

    Google Scholar 

  • Brune DC (1992) Cysteine alkylation with acrylamide for protein sequence determination. Anal Biochem 207:285–290

    Google Scholar 

  • Condit CM, Meagher RB (1986) A gene encoding a novel glycine-rich structural protein of petunia. Nature 323:178–181

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Fang RX, Pang Z, Gao DM, Mang KQ, Chua NH (1991) cDNA sequence of a virus-inducible, glycine-rich protein from rice. Plant Mol Biol 17:1255–1257

    Google Scholar 

  • Fischer U (1989) Enzymatic steps in dissimilatory sulfur metabolism by whole cells of anoxyphotobacteria. In: Saltzman E, Cooper W (eds) Biogenic sulfur in the environment. American Chemical Society, Washington, DC, pp 262–279

    Google Scholar 

  • Fontana A (1972) Modification of tryptophan with BNPS-skatole [2,(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine]. Methods Enzymol 25:419–423

    Google Scholar 

  • Gemerden H van, Beeftink HH (1983) Ecology of phototrophic bacteria. In: Ormerod JG (ed) The phototrophic bacteria: anaerobic life in the light. Blackwell Scientific, Oxford, pp 146–185

    Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63:1193A-1203A

    Google Scholar 

  • Hohl D, Mehrel T, Lichti U, Turner ML, Roop DR, Steinert PM (1991) Characterization of human loricrin. J Biol Chem 266: 6626–6636

    Google Scholar 

  • Hope J, Multhaup G, Reekie LJD, Kimberlein RH, Beyreuther K (1988) Molecular pathology of scrapie-associated fibril protein (PrP) in mouse brain affected by the ME7 strain of scrapie. Eur J Biochem 172:271–277

    Google Scholar 

  • Imhoff JF (1984) Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 34:338–339

    Google Scholar 

  • Johnson LD, Idler WW, Zhou XM, Roop DR, Steinert PM (1985) Structure of a gene for the human 67-kDa keratin. Proc Natl Acad Sci USA 82:1896–1900

    Google Scholar 

  • Kay BK, Sawhney RK, Wilson SH (1990) Potential for two isoforms of the A1 ribonucleoprotein in Xenopus laevis. Proc Natl Acad Sci USA 87:1367–1371

    Google Scholar 

  • Keller B, Sauer N, Lamb CJ (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J 7:3625–3633

    Google Scholar 

  • Klinge EM, Sylvestre YR, Freedberg IM, Blumenberg M (1987) Evolution of keratin genes: different protein domains evolve by different pathways. J Mol Evol 24:319–329

    Google Scholar 

  • Krieg TM, Schafer MP, Cheng CK, Filpula D, Flaherty P, Steinert PM, Roop DR (1985) Organization of a type I keratin gene. J Biol Chem 260:5867–5870

    Google Scholar 

  • Kuruc N, Leube RE, Moll I, Bader BL, Franke WW (1989) Synthesis of cytokeratin 13, a component of internal stratified epithelia, is not induced in human epithelial tumors. Differentiation 42:111–123

    Google Scholar 

  • Lecanidou R, Rodakis GC, Eickbush TH, Kafatos FC (1986) Evolution of the silk moth chorion gene superfamily: gene families CA and CB. Proc Natl Acad Sci USA 83:6514–6518

    Google Scholar 

  • LeGendre N (1990) Immobilon-P transfer membrane: applications and utility in protein biochemical analysis. Biotechniques 9: 788–805

    Google Scholar 

  • Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Mcrobiol Lett 99:227–232

    Google Scholar 

  • Mas J, Gemerden H van (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and bouyant density of Chromatium vinosum. Arch Microbiol 146:362–369

    Google Scholar 

  • Matsubara H, Sasaki RM (1969) High recovery of tryptophan from acid hydrolysates of proteins. Biochem Biophys Res Commun 35:175–181

    Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    Google Scholar 

  • Matunis EL, Matunis MJ, Dreyfuss G (1992) Characterization of the major hnRNP proteins from Drosophila melanogaster. J Cell Biol 116:257–269

    Google Scholar 

  • Mishke D, Wachter E, Hochstrasser K, Wild AG, Schulz P (1989) The N-, but not C-terminal domains of human keratins 13 and 15 are closely related. Nucleic Acids Res 17:7984

    Google Scholar 

  • Nicolson GL, Schmidt GL (1971) Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol 105: 1142–1148

    Google Scholar 

  • Penke B, Ferenczi R, Kovacs K (1974) A new acid hydrolysis method for determining tryptophan in peptides and proteins. Anal Biochem 60:45–50

    Google Scholar 

  • Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 279–289

    Google Scholar 

  • Remsen CC (1978) Comparative subcellular architecture of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 31–60

    Google Scholar 

  • Schägger H, Jagow G von (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for separation of proteins in the range from 1 to 100 kDa. Anal Biochem 155:368–379

    Google Scholar 

  • Schmidt GL, Nicolson GL, Kamen MD (1971) Composition of the sulfur particle of Chromatium vinosum strain D. J Bacteriol 105:1137–1141

    Google Scholar 

  • Schmidt TM, DiSpirito AA (1990) Spectral characterization of c-type cytochromes purified from Beggiatoa alba. Arch Microbiol 154:453–458

    Google Scholar 

  • Schmidt TM, Vinci VA, Strohl WR (1986) Protein synthesis by Beggiatoa alba B18LD in the presence and absence of sulfide. Arch Microbiol 144:158–162

    Google Scholar 

  • Stackebrandt E, Embley M, Weckesser J (1988a) Phylogenetic, evolutionary, and taxonomic aspects of phototrophic eubacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 201–215

    Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988b) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38: 321–325

    Google Scholar 

  • Steinert PM, Mack JW, Korge BP, Gan SQ, Haynes SR, Steven AC (1991) Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Biol Macromol 13:130–139

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT, Gemerden H van (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 155:432–437

    Google Scholar 

  • Then J (1984) Beiträge zur Sulfideoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. PhD Thesis, University of Bonn, Germany

  • Tindall BJ (1988) Prokaryotic life in the alkaline, saline, athalassic environment. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol. 1. CRC Press, Boca Raton, pp 31–67

    Google Scholar 

  • Tsunasawa S, Sakiyama F (1984) Amino-terminal acylation of proteins: an overview. Methods Enyzmol 106:165–170

    Google Scholar 

  • Yoneda K, Hohl D, McBride OW, Wang M, Cehrs KU, Idler WW, Steinert PM (1992) The human loricrin gene. J Biol Chem 267: 18060–18066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Brune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, D.C. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina . Arch. Microbiol. 163, 391–399 (1995). https://doi.org/10.1007/BF00272127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272127

Key words

Navigation