Skip to main content
Log in

Influence of the glycosidic torsion angle on 13C and 15N shifts in guanosine nucleotides: Investigations of G-tetrad models with alternating syn and anti bases

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The effect of the glycosidic torsion angle on 13C and 15N shifts of the sugar and base moieties of guanosine nucleotides was investigated by comparing the sites in two model G-tetrad oligodeoxynucleotides that contain guanosine residues alternately with syn and anti bases. The sugar puckering has been shown to be C2′-endo for both cases. It was observed that, for the instances with syn bases, the C1′ through C4′ carbons showed shifts that may be distinguished from those normally found in B-DNA-like structures. C1′, C3′ and C4′ moved to lower field, while C2′ moved to higher field. Effects of the change in glycosidic torsion angle were also seen in the shifts of base carbons and nitrogens in the five-membered ring portion of the base. Characterization of the shift variation associated with this conformational change may be useful in developing the use of 13C shifts as a tool in conformational analysis of oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashcroft, J., LaPlante, S.R., Borer, P.N. and Cowburn, D.C. (1989) J. Am. Chem. Soc., 111, 363–365.

    Google Scholar 

  • Ashcroft, J., Live, D., Patel, D.J. and Cowburn, D. (1991) Biopolymers, 31, 45–55.

    Google Scholar 

  • Bax, A. and Summers, M.F. (1986) J. Am. Chem. Soc., 108, 2093–2094.

    Google Scholar 

  • Borer, P.N., Zanatta, N., Holak, T.A., Levy, G.C., VanBoom, J. and Wang, A.-H.J. (1984) J. Biomol. Struct. Dyn., 1, 1373–1386.

    Google Scholar 

  • Brennan, T., Weeks, C., Shefter, E., Rao, S.T. and Sundaralingam, M. (1972) J. Am. Chem. Soc., 94, 8548–8553.

    Google Scholar 

  • DeDios, A.C., Pearson, J.G. and Oldfield, E. (1993) J. Am. Chem. Soc., 115, 9968–9773.

    Google Scholar 

  • Ghose, R., Marino, J.P., Wiberg, K.B. and Prestegard, J.H. (1994) J. Am. Chem. Soc., 116, 8827–8828.

    Google Scholar 

  • Kang, C.H., Zhang, X., Ratliff, R., Mpyzis, R. and Rich, A. (1992) Nature, 356, 126–131.

    Google Scholar 

  • Lankhorst, P.P., Erkelens, C., Haasnoot, C.A.G. and Altona, C. (1983) Nucleic Acids Res., 11, 7215–7230.

    Google Scholar 

  • LaPlante, S.R., Ashcroft, J., Cowburn, D., Levy, G.C. and Borer, P.N. (1988a) J. Biomol. Struct. Dyn., 5, 1089–1099.

    Google Scholar 

  • LaPlante, S.R., Bourdreau, E.A., Zanatta, N., Levy, G.C., Borer, P.N., Ashcroft, J. and Cowburn, D. (1988b) Biochemistry, 27, 7902–7909.

    Google Scholar 

  • LaPlante, S.R., Zanatta, N., Hakkinen, A., Wang, A.H.-J. and Borer, P.N. (1994) Biochemistry, 33, 2430–2440.

    Google Scholar 

  • Leupin, W., Wagner, G., Denny, W. and Wüthrich, K. (1987) Nucleic Acids Res., 15, 269–275.

    Google Scholar 

  • Live, D., David, D.G., Agosta, W. and Cowburn, D.C. (1984) J. Am. Chem. Soc., 106, 1939–1943.

    Google Scholar 

  • Michnicka, M.J., Harper, J.W. and King, G.C. (1993) Biochemistry, 32, 395–400.

    Google Scholar 

  • Nikonowicz, E.P. and Pardi, A. (1993) J. Mol. Biol., 232, 1141–1156.

    Google Scholar 

  • Santos, R.A., Tang, P. and Harbison, G.S. (1989) Biochemistry, 28, 9372–9378.

    Google Scholar 

  • Schultze, P., Macaya, R.F. and Feigon, J. (1994) J. Mol. Biol., 235, 1532–1547.

    Google Scholar 

  • Sklenář, V., Bax, A. and Zon, G. (1987) J. Am. Chem. Soc., 109, 2221–2222.

    Google Scholar 

  • Smith, F.W. and Feigon, J. (1992) Nature, 356, 164–168.

    Google Scholar 

  • Thewalt, U., Bugg, C.E. and Marsh, R.E. (1970) Acta Crystallogr., B26, 1089–1101.

    Google Scholar 

  • Varani, G., Cheong, C. and TinocoJr., I. (1991) Biochemistry, 30, 3280–3289.

    Google Scholar 

  • Varani, G. and TinocoJr., I. (1991) J. Am. Chem. Soc., 113, 9349–9354.

    Google Scholar 

  • Wang, Y., De losSantos, C., Gao, X., Greene, K., Live, D. and Patel, D.J. (1991) J. Mol. Biol., 222, 819–832.

    Google Scholar 

  • Wang, K.Y., Heffron, G.J., Bishop, K.D., Levy, G.C., Garbesi, A.M., Tondelli, L., Medley, J.H. and Borer, P.N. (1992) Magn. Reson. Chem., 30, 377–380.

    Google Scholar 

  • Wang, Y. and Patel, D.J. (1993) Structure, 1, 263–282.

    Google Scholar 

  • Zhu, G., Live, D. and Bax, A. (1994) J. Am. Chem. Soc., 116, 8370–8371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of the work reported here derives from the Ph.D. Thesis of Karen L. Greene, Emory University, Atlanta, GA, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, K.L., Wang, Y. & Live, D. Influence of the glycosidic torsion angle on 13C and 15N shifts in guanosine nucleotides: Investigations of G-tetrad models with alternating syn and anti bases. J Biomol NMR 5, 333–338 (1995). https://doi.org/10.1007/BF00182274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182274

Keywords

Navigation