Skip to main content
Log in

Effects of dispersal in a tri-trophic metapopulation model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The aim of this paper is to understand how dispersal in a patchy environment influences the stability properties of tri-trophic metapopulations. Differential equation models for tri-trophic metapopulations are formulated and analysed. The patchy nature of the metapopulations is incorporated through dispersal phases. Two variants are studied: one with a dispersal phase for the top and one with a dispersal phase for the middle level. A complete characterisation of stable and unstable equilibria is given and the possibility of invasion in these food chains is studied. A dispersal phase for the middle level can destabilize the bottom level-middle level interaction, because of the delay that dispersal causes in the reaction to the resource. When the middle level is not efficiently controlled by the top level, the unstable bottom level-middle level pair can destabilize the entire food chain. Dispersal for the top level can destabilize in the same way. A characterisation of the long term behaviour of the models is given. Bistability with a stable three species equilibrium and a stable limit cycle is one of the possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder, F.: Migration alone can produce persistence of host-parasitoid models. Am. Nat. 141, 642–650

  • Anderson, R. M. and May, R. M.: The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. 291, 451–524 (1981)

    Google Scholar 

  • Butler, G., Freedman, H. I. and Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Google Scholar 

  • Butler, G. and Waltman, P.: Bifurcation from a limit cycle in a two predator-one prey ecosystem modelled on a chemostat. J. Math. Biol. 12, 295–310 (1981)

    Google Scholar 

  • Comins, H. N., Hassell, M. P. and May, R. M.: The spatial dynamics of host-parasitoid systems. J. Anim. Ecol. 61, 735–748 (1992)

    Google Scholar 

  • Diekmann, O., Metz, J. A. J. and Sabelis, M. W.: Mathematical models of predator/prey/plant interactions in a patch environment. Exp. Appl. Acarol. 5, 319–342 (1988)

    Google Scholar 

  • Farkas, M.: Stable oscillations in a predator-prey model with time lag. J. Math Anal. Appl. 102, 175–188 (1984)

    Google Scholar 

  • Freedman, H. I. and Waltman, P.: Mathematical analysis of some three-species food-chain models. Math. Biosc. 33, 257–276 (1977)

    Google Scholar 

  • Gard, T. C. and Hallam, T. G.: Persistence in food webs I: Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    Google Scholar 

  • Godfray, H. C. J. and Chan, M. S.: How insecticides trigger single-stage outbreaks in tropical pests. Func. Ecol. 4, 329–337 (1990)

    Google Scholar 

  • Hadeler, K. P. and Freedman, H. L.: Predator-prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Google Scholar 

  • Hale, J. K. and Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–395 (1989)

    Google Scholar 

  • Harrison, G. W.: Global stability of food chains. Am. Nat. 114, 455–457 (1978)

    Google Scholar 

  • Hassell, M. P., Comins, H. and May, R. M.: Spatial structure and chaos in insect population dynamics. Nature 353, 252–258

  • Hastings, A.: Spatial heterogeneity and the stability of predator-prey systems, Theor. Pop. Biol. 12 (1977) 37–48

    Google Scholar 

  • Hastings, A. and Powell, T. J.: Chaos in three species food chains. Ecology 72, 896–903 (1991)

    Google Scholar 

  • Hofbauer, J.: A unified approach to persistence. Acta Appl. Math. 14, 11–22 (1989).

    Google Scholar 

  • Hofbauer, J. and Sigmund, K.: The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  • Hogeweg, P. and Hesper, B.: Interactive instructions on population dynamics. Comp. Biol. Med. 8, 319–327 (1978)

    Google Scholar 

  • Hutson, V.: A theorem on average Lyapunov functions. Monatsh. Math. 98, 267–275 (1984)

    Google Scholar 

  • Hutson, V. and Vickers, T.: A criterion for permanent coexistence of species with an application to a two-prey one predator system. Math Biosci. 63, 253–269 (1983).

    Google Scholar 

  • Jansen, V. A. A. and Sabelis, M. W.: Prey dispersal and predator persistence. Exp. Appl. Acarol. 14, 215–231 (1992)

    Google Scholar 

  • Jansen, V. A. A. and Sabelis, M. W.: Outbreaks of colony-forming pests in tri-trophic systems: condequences for pest control and the evolution of pesticide resistance. Oikos (to appear)

  • Jansen, V. A. A.: The dynamics of two diffusively coupled, identical Lotka-Volterra patches. In: Jansen, V. A. A.: Theoretical Aspects of Metapopulation Dynamics. Ph.D. Thesis, Leiden University, Leiden (1994a)

  • Jansen, V. A. A.: On the bifurcation structure of two diffusively coupled predator-prey systems. In: Jansen, V. A. A.: Theoretical Aspects of Metapopulation Dynamics. Ph.D. Thesis, Leiden University, Leiden (1994b)

  • Khibnik, A. L., Kuznetsov, Y. A., Levitin, V. V. and Nikolaev E. V.: Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 360–371 (1993)

    Google Scholar 

  • Klebanoff, A. and Hastings, A.: Chaos in three species food chains. J. Math. Biol. 32, 427–451 (1994)

    Google Scholar 

  • Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969)

    Google Scholar 

  • McCann, K. and Yodzis, P.: Bifurcation structure of a three species food chain model. Theor. Pop. Biol. 48 (1995)

  • Muratori, S. and Rinaldi, S.: Low- and high-frequency oscillations in three dimensional food chain systems. SIAM J. Appl. Math. 52, 1688–1706 (1992)

    Google Scholar 

  • Nachman, G.: A acarine predator-prey metapopulation system inhabiting greenhouse cucumbers. Biol. J. Linn. Soc. 42, 285–303 (1991)

    Google Scholar 

  • Sabelis, M. W. and Dicke, M.: Long-range dispersal and searching behaviour. In: Helle, W. and Sabelis, M. W. (eds.): Spider mites: their biology, natural enemies and control, Vol 1b. Amsterdam: Elsevier, pp. 141–160 (1985)

    Google Scholar 

  • Sabelis M. W. and Diekmann, O.: Overall population stability despite local extinction: The stabilizing influence of prey dispersal from predator-invaded patches. Theor. Pop. Biol. 34, 169–176 (1988)

    Google Scholar 

  • Sabelis M. W., Diekmann, O. and Jansen, V. A. A.: Metapopulation persistence despite local extinction: predator-prey patch models of the Lotka-Volterra type. Biol. J. Linn. Soc. 42, 267–283 (1991)

    Google Scholar 

  • Sabelis, M. W. and Laane, W. E. M.: Regional dynamics of spider-mite populations that become extinct locally because of food source depletion and predation by phytoseiid mites (Acarina: Tetranychidae, Phytoseiidae). In: Metz, J. A. J. and Diekmann, O. (eds.): The dynamics of physiologically structured populations. (Lect. Notes Biomath. vol. 68) Berlin: Springer, pp. 345–375 (1986)

    Google Scholar 

  • So, J. W. H.: A note on global stability and bifurcation phenomenon of a Lotka-Volterra food chain. J. Theor. Biol. 80, 185–187 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, V.A.A. Effects of dispersal in a tri-trophic metapopulation model. J. Math. Biol. 34, 195–224 (1995). https://doi.org/10.1007/BF00178773

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178773

Key words

Navigation