Skip to main content
Log in

Simulations of the mean solar magnetic field during sunspot cycle 21

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Regarding new bipolar magnetic regions as sources of flux, we have computed the evolution of the photospheric magnetic field during 1976–1984 and derived the corresponding evolution of the mean line-of-sight field as seen from Earth. We obtained a good, but imperfect, agreement between the observed mean field and the field computed for a nominal choice of flux transport parameters. Also, we determined the response of the computed mean field to variations in the transport parameters and the source properties. The results lead us to regard the mean-field evolution as a random-walk process with dissipation. New eruptions of flux produce the random walk, and together differential rotation, meridional flow (if present), and diffusion provide the dissipation. The net effect of each new source depends on its strength and orientation (relative to the strength and orientation of the mean field) and on the time elapsed before the next eruption (relative to the decay time of the field). Thus the mean field evolves principally due to the contributions of the larger sources, which produce a strong, gradually evolving field near sunspot maximum but a weak, sporadically evolving field near sunspot minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels, J.: 1934, J. Geophys. Res. 39, 201.

    Google Scholar 

  • Bell, B. and Noci, G.: 1976, J. Geophys. Res. 81, 4508.

    Google Scholar 

  • Bohlin, J. D. and Sheeley, N.R., Jr.: 1978, Solar Phys. 56, 125.

    Google Scholar 

  • DeVore, C. R. and Sheeley, N. R., Jr.: 1985, presented at the Ronald Giovanelli Commemorative Colloquium, Part II, 17–18 January, Oracle, Arizona.

    Google Scholar 

  • DeVore, C. R., Sheeley, N. R., Jr., and Boris, J. P.: 1984, Solar Phys. 92, 1.

    Google Scholar 

  • Duvall, T. L., Jr.: 1979, Solar Phys. 63, 3.

    Google Scholar 

  • Gaizauskas, V., Harvey, K. L., Harvey, J. W., and Zwaan, C: 1983, Astrophys. J. 265, 1056.

    Google Scholar 

  • Giovanelli, R. G.: 1982, ‘The Mechanism of the Sunspot and Solar Magnetic Cycles as Inferred from Observation’, preprint.

  • Hoeksema, J. T., Scherrer, P. H., and Wilcox, J. M.: 1980, Bull. Am. Astron. Soc. 12, 474.

    Google Scholar 

  • Howard, R.: 1979, Astrophys. J. Letters 228, L45.

    Google Scholar 

  • Howard, R. and LaBonte, B. J.: 1981, Solar Phys. 74, 131.

    Google Scholar 

  • Howard, R., Gilman, P. A., and Gilman, P. I.: 1984, Astrophys. J. 283, 373.

    Google Scholar 

  • Hundhausen, H. J.: 1977, in J. B. Zirker (ed.), Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press, Boulder, p. 225.

    Google Scholar 

  • Krieger, A. S., Timothy, A. F., and Roelof, E. C.: 1973, Solar Phys. 29, 505.

    Google Scholar 

  • LaBonte, B. J. and Howard, R.: 1982, Solar Phys. 80, 361.

    Google Scholar 

  • Leighton, R. B.: 1964, Astrophys. J. 140, 1547.

    Google Scholar 

  • Losh, H. M.: 1939, Publ. Obs. Univ. Michigan 7, 127.

    Google Scholar 

  • Mosher, J. M.: 1977, ‘The Magnetic History of Solar Active Regions’, Ph. D. Dissertation, California Institute of Technology.

  • Neupert, W. M. and Pizzo, V.: 1974, J. Geophys. Res. 79, 3701.

    Google Scholar 

  • Newton, H. W. and Nunn, M. L.: 1951, Monthly Notices Roy. Astron. Soc. 111, 413.

    Google Scholar 

  • Nolte, J. T., Krieger, A. S., Timothy, A. F., Gold, R. E., Roelof, E. C., Vaiana, G. S., Lazarus, A. J., Sullivan, J. D., and McIntosh, P. S.: 1976, Solar Phys. 46, 303.

    Google Scholar 

  • Schatten, K. H., Leighton, R. B., Howard, R., and Wilcox, J. M.: 1972, Solar Phys. 26, 283.

    Google Scholar 

  • Scherrer, P. H. and Svalgaard, L.: 1977, Trans. Am. Geophys. Union (EOS) 58, 769.

    Google Scholar 

  • Sheeley, N. R., Jr.: 1966, Astrophys. J. 144, 723.

    Google Scholar 

  • Sheeley, N. R., Jr.: 1981a, Astrophys. J. 243, 1040.

    Google Scholar 

  • Sheeley, N. R., Jr.: 1981b, in F. O. Orrall (ed.), Solar Active Regions, Colorado Assoc. Univ. Press, Boulder, p. 17.

    Google Scholar 

  • Sheeley, N. R. Jr. and DeVore, C. R.: 1985, in preparation.

  • Sheeley, N. R., Jr. and Harvey, J. W.: 1978, Solar Phys. 59, 159.

    Google Scholar 

  • Sheeley, N. R., Jr. and Harvey, J. W.: 1981, Solar Phys. 70, 237.

    Google Scholar 

  • Sheeley, N. R., Jr., Harvey, J. W., and Feldman, W. C.: 1976, Solar Phys. 49, 271.

    Google Scholar 

  • Snodgrass, H. B.: 1983, Astrophys. J. 270, 288.

    Google Scholar 

  • Svalgaard, L. and Wilcox, J. M.: 1975, Solar Phys. 41, 461.

    Google Scholar 

  • Topka, K., Moore, R., LaBonte, B. J., and Howard, R.: 1982, Solar Phys. 79, 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

E. O. Hulburt Center for Space Research.

Laboratory for Computational Physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheeley, N.R., DeVore, C.R. & Boris, J.P. Simulations of the mean solar magnetic field during sunspot cycle 21. Sol Phys 98, 219–239 (1985). https://doi.org/10.1007/BF00152457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00152457

Keywords

Navigation