Skip to main content
Log in

The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Using tritium as a radiolabel marker of interspecific fluid transfer, we present experimental evidence that the heteromorphic deutonymph of an astigmatid mite (Hemisarcoptes cooremani) acquires materials (at least water) directly from the haemolymph of its beetle host (Chilocorus cacti). This acquisition is above that obtained from atmospheric vapour. The material acquired from the host is necessary for the completion of the ontogeny of H. cooremani and is likely procured through the action of the caudal ventral suckers of the heteromorphic deutonymph (hypopus). On gross morphological criteria, this mite-beetle relationship was previously defined as phoretic (for dispersal). Scanning electron photomicrographs of the physical relationship between the hypopodes and the heetles shed light on the ‘parasitic’ nature of the hypopus of H. cooremani. Our findings are discussed in terms of the evolution of parasitism from a free-living astigmatid form. This transition into parasitism is facilitated by the heteromorphic hypopus and represents a classic ‘wolf-insheep's-clothing’ strategy. The heteromorph retains the characteristic phoretic morphology while exploiting the host in transit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahearn, G.A. 1970. The control of water loss in desert Tenebrionid beetles. J. Exp. Biol. 53: 573–595.

    Google Scholar 

  • Ahearn, G.A. and Hadley, N.F. 1969. The effects of temperature and humidity on water loss in two desert Tenebrionid beetles, Eleodes armata and Cryptoglossa verrucosa. Comp. Biochem. Physiol. 30: 739–749.

    Google Scholar 

  • Arlian, L.G. 1977. Humidity as a factor regulating feeding and water balance of house dust mites Dermatophagoides farinae and D. pteronyssinus. J. Med. Entomol. 13: 484–488.

    Google Scholar 

  • Arlian, L.G. and Veselica, M.M.. 1979. Review: water balance in insects and mites. Comp. Biochem. Physiol. 64: 191–200.

    Google Scholar 

  • Arlian, L.G. and Veselica, M.M. 1981. Effect of temperature on the equilibrium body water mass in the mite Dermatophagoides farinae. Physiol. Zool. 54: 393–399.

    Google Scholar 

  • Arlian, L.G. and Veselica, M.M. 1982. Relationship between transpiration rate and temperature in the mite Dermatophagoides farinae. Physiol. Zool. 55: 344–354.

    Google Scholar 

  • Athias-Binche, F. 1984. La phorésie chez les acariens uropodides (Anactinotriches), une stratégie écologique originale. Acta Oecologica Oecol. Gen. 5: 119–133.

    Google Scholar 

  • Binns, E.S. 1982. Phoresy as migration, some functional aspects of phoresy in mites. Biol. Rev. 57: 571–620.

    Google Scholar 

  • Blackwell, M., Bridges, J.R., Moser, J.C. and Perry, T.J. 1986. Hyperphoretic dispersal of Pyxidiophora anamorph. Science 232: 993–995.

    Google Scholar 

  • Cooper, K.W. 1955. Venereal transmission of mites by wasps, and some evolutionary problems arising from the remarkable association of Ensliniella trisetosa with the wasp Ancistrocerus antilope. Biology of Eumenine wasps II. Trans. Am. Entomol. Soc. 80: 119–174.

    Google Scholar 

  • Diamond, J.M. and Bossart, W.H. 1967. Standing gradient osmotic flow. A mechanism for coupling of water and fluid transport in epithelia. J. Gen. Physiol. 50: 2061–2083.

    Google Scholar 

  • Dugès, A. 1934. Recherches sur l'ordre des Acariens en genéral et la famille des Trombidies en particular. Ann. Sci. Nat. (Zool.) 1: 5–46.

    Google Scholar 

  • Edney, E.B. 1977. Water Balance in Land Arthropods, Zoophysiology and Ecology 9. Springer-Verlag, Berlin.

    Google Scholar 

  • Eickwort, G.C. 1990. Associations of mites with social insects. Ann. Rev. Entomol. 35: 469–488.

    Google Scholar 

  • Fain, A. 1969. Adaptation to parasitism in mites. Acarologia 11: 429–449.

    Google Scholar 

  • Fain, A. and Bafort, J. 1967. Cycle évolurif et morphologie de Hypodectes (Hypodectoides) propus (Nitzsch) acarien nidicole à deutonymphe parasite tissulaire des pigeons. Bull. Acad. R. Belg. 53: 501–533.

    Google Scholar 

  • Fain, A., Lukoschus, F.S., Louppen, J.M.W. and Mendez, E. 1973. Echimyopus dasypus, n.sp. a hypopus from Dasypus novemcinctus in Panama (Glycyphagidae, Echimyopinae: Sarcoptiformes). J. Med. Entomol. 10: 552–555.

    Google Scholar 

  • Farish, D.J. and Axtell, R.C. 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13: 6–29.

    Google Scholar 

  • Gaede, K. 1992. On the water balance of Phytoseiulus persimilis A.-H. and its ecological significance. Exp. Appl. Acarol. 15: 181–198.

    Google Scholar 

  • Gaede, K. and Knülle, W. 1987. Water vapour uptake from the atmosphere and critical equilibrium humidity of a feather mite. Exp. Appl. Acaro;. 3: 45–52.

    Google Scholar 

  • Griffiths, D.A. 1964. Experimental studies on the systematics of the genus Acarus Linnaeus, 1758 (Acaridae, Acarina). In Proc. 1st Int. Congr. Acarol. Acarologia 6 (Suppl.), pp. 101–116. Fort Collins, CO. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Houck, M.A. 1989. Isozyme analysis of the mite Hemisarcoptes and its beetle host. Entomol. Exp. Appl. 52: 167–172.

    Google Scholar 

  • Houck, M.A. 1993. Adaptation and transition into parasitism from commensalism: a phoretic model. In Mites: ecological and evolutionary analyses of life history patterns, M. A. Houck (ed.), pp. 252–281. Chapman and Hall, London.

    Google Scholar 

  • Houck, M.A. and Lindley, V. 1993. A microwave technique for microscopical studies involving arthropods. Am. Entomol. 38: 117–119.

    Google Scholar 

  • Houck, M.A. and OConnor, B. M. 1990. Ontogeny and life history of Hemisarcoptes cooremani (Acari: Hemisarcoptidae). Ann. Entomol. Soc. Am. 83: 161–205.

    Google Scholar 

  • Houck, M.A. and OConnor, B. M. 1991. Phoresy in the acariform acari. Annu. Rev. Entomol. 36: 611–636.

    Google Scholar 

  • Hughes, R.D. and Jackson, C.G. 1958. A review of the Anoetidae (Acari). Va. J. Sci. 9: 5–198.

    Google Scholar 

  • Kahl, O. and Knülle, W. 1968. Water vapor uptake from subsaturated atmospheres by engorged immature ixodid ticks. Exp. Appl. Acarol. 4: 73–83.

    Google Scholar 

  • Knülle, W. 1984. Water vapor uptake in mites and insects: an ecophysiological and evolutionary perspective. In Acarology VI, Vol. 1, D.A. Griffiths and C.E. Bowman (eds), pp. 71–82. Ellis Horwood, Chichester.

    Google Scholar 

  • Knülle, W. 1986. Aktive aufnahme von wasserdamp aus der ungesättigen atmosphäre beit arthropoden. Zool. Beitr. N. F. 40: 393–408.

    Google Scholar 

  • Knülle, W. and Wharton, G.W. 1963. Equilibrium humidities in arthropods and their ecological significance. In Proc. 1st Int. Congr. Acarol. Acarologia 6 (Suppl.), pp. 101–299. Fort Collins, CO. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Knülle, W. and Wharton, G.W. 1964. Equilibrium humidities in arthropods and their ecological significance. Acarologia 6: 299–306.

    Google Scholar 

  • Krombein, K.V. 1961. Some symbiotic relationships between saproglyphid mites and solitary vespid wasps (Acarina, Saproglyphidae and Hymenoptera, Vespidae). J. Wash. Acad. Sci. 51: 89–93.

    Google Scholar 

  • McCormick, K.D., Attygalle, A.B., Xu, S-C., Svatos, A., Meinwald, J., Houck, M.A., Blankespoor, C.L. and Eisner, T. 1994. Chilocorine: heptacyclic alkaloid from a coccinellid beetle. Tetrahedron 50: 2365–2372.

    Google Scholar 

  • O'Connor, B.M. 1982. Evolutionary ecology of astigmatid mites. Ann. Rev. Entomol. 27: 385–409.

    Google Scholar 

  • SAS 1990. User's Guide. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Slobodchikoff, C.N. and Wismann, K. 1981. A function of the subelytral chamber of tenebrionid beetles. J. Exp. Biol. 90: 109–114.

    Google Scholar 

  • Stolpe, S.G. 1938. The life cycle of the tyroglypid mites infesting cultures of Drosophila melanogaster. Anat. Rec. 72: 133–134.

    Google Scholar 

  • Treat, A.E. 1975. Mites of Moths and Butterflies. Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  • Wharton, G.W. 1978. Uptake of water vapor by mites and mechanisms utilized by the Acaridei. In Comparative Physiology-Water, Ions and Fluid Mechanics, K. Schmidt-Nielson, L. Bolis and S.H.P. Maddrell (eds), pp. 79–95. Cambridge University Press, England.

    Google Scholar 

  • Wharton, G.W. and Devine, T.L. 1968. Exchange of water between a mite, Laelaps echidnina, and the surrounding air under equilibrium conditions. J. Insect Physiol. 14: 1303–1318.

    Google Scholar 

  • Xiongwei, S., Attygalle, A.B., Meinwald, A.J., Houck, M.A. and Eisner, T. 1995. Spirocyclic defensive alkaloid from a Coccinellid beetle. Tetrahedron: in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houck, M.A., Cohen, A.C. The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite. Exp Appl Acarol 19, 677–694 (1995). https://doi.org/10.1007/BF00052079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052079

Key words

Navigation