Skip to main content
Log in

AT-rich promoter elements of soybean heat shock gene Gmhsp 17.5E bind two distinct sets of nuclear proteins in vitro

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A 33 bp double-stranded oligonucleotide homologous to two AT-rich sequences located upstream (−907 to −889 and −843 to −826) to the start of transcription of heat shock gene Gmhsp17.5E of soybean stimulated transcription when placed 5′ to a truncated (−140) maize Adh1 promoter. The chimeric promoter was assayed in vivo utilizing anaerobically stressed sunflower tumors transformed by a pTi-based vector of Agrobacterium tumefaciens.

Nuclear proteins extracted from soybean plumules were shown to bind double-stranded oligonucleotides homologous to AT-rich sequences in the 5′ flanking regions of soybean β-conglycinin, lectin, leghemoglobin and heat shock genes. These proteins were also shown to bind AT-rich probes homologous to homeobox protein binding sites from the Antennapedia and engrailed/fushi tarazu genes of Drosophila. Binding activity specific for AT-rich sequences showed a wide distribution among various plant organs and species. Preliminary characterization indicated that two sets of nuclear proteins from soybean bind AT-rich DNA sequences: a diverse high-molecular-weight (ca. 46–69 kDa) group, and a low-molecular-weight (23 and 32 kDa) group of proteins. The latter meets the operational criteria for high-mobility group proteins (HMGs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfageme CR, Rudkin GT, Cohen LH: Isolation, properties and cellular distribution of D1, a chromosomal protein of Drosophila. Chromosoma 78: 1–31 (1980).

    Article  PubMed  Google Scholar 

  2. Ashley CT, Pendleton CG, Jennings WW, Saxena A, Glover CVC: Isolation and sequencing of cDNA clones encoding Drosophila chromosomal protein D1. J Biol Chem 264: 8394–8401 (1989).

    PubMed  Google Scholar 

  3. Baumann G, Raschke E, Bevan M, Schöffl F: Functional analysis of sequences required for transcriptional activation of a soybean heat shock gene in transgenic tobacco plants. EMBO J 6: 1161–1166 (1987).

    Google Scholar 

  4. Bruce WB, Gurley WB: Functional domains of a T-DNA promoter active in crown gall tumors. Mol Cell Biol 7: 59–67 (1987).

    PubMed  Google Scholar 

  5. Brutlag DL, Peacock WJ: Sequences of highly repeated DNA in Drosophila melanogaster In: Peacock WJ, Brock RD (eds) The Eukaryote Chromosome, pp. 35–46. Australian National University Press, Canberra (1975).

    Google Scholar 

  6. Buchman AR, Kornberg RD: A yeast ARS-binding protein activates transcription synergistically in combination with other weak activating factors. Mol Cell Biol 10: 887–897 (1990).

    PubMed  Google Scholar 

  7. Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC: Regulation of β-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean β-phaseolin gene. Plant Cell 1: 839–853 (1989).

    Article  PubMed  Google Scholar 

  8. Czarnecka E, Fox PC, Gurley WB: In vitro interaction of nuclear proteins with the promoter of soybean heat shock gene Gmhsp17.5E. Plant Physiol 94: 935–943 (1990).

    Google Scholar 

  9. Czarnecka E, Gurley WB, Nagao RT, Mosquera LA, Key JL: DNA sequence and transcript mapping of a soybean gene encoding a small heat shock protein. Proc Natl Acad Sci USA 82: 3726–3730 (1985).

    Google Scholar 

  10. Czarnecka E, Key JL, Gurley WB: Regulatory domains of the Gmhsp17.5E heat shock promoter of soybean. Mol Cell Biol 9: 3457–3463 (1989).

    PubMed  Google Scholar 

  11. Datta N, Cashmore AR: Binding of a pea nuclear protein to promoters of certain photoregulated genes is modulated by phosphorylation. Plant Cell 1: 1069–1077 (1989).

    Article  PubMed  Google Scholar 

  12. Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ, Peacock WJ: Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl Acids Res 12: 3983–4000 (1984).

    PubMed  Google Scholar 

  13. Desplan C, Theis J, O'Farrell PH: The sequence specificity of homeodomain-DNA interaction. Cell 54: 1081–1090 (1988).

    PubMed  Google Scholar 

  14. Doyle JJ, Schuler MA, Godette WD, Zenger V, Beachy RN, Slightom JL: The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris, structural homologies of genes and proteins. J Biol Chem 261: 9228–9238 (1986).

    PubMed  Google Scholar 

  15. Endow SA, Polan ML, Gall JG: Satellite DNA sequences of Drosophila melanogaste. J Mol Biol 96: 665–692 (1975).

    PubMed  Google Scholar 

  16. Favaloro J, Treisman R, Kamen R: Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. In: Grossman L, Moldave K (eds) Methods in Enzymology, vol. 65, pp. 718–749. Academic Press, New York (1980).

    Google Scholar 

  17. Forde BG, Freeman J, Oliver JE, Pineda M: Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean. Plant Cell 2: 925–939 (1990).

    Article  PubMed  Google Scholar 

  18. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC: Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807 (1983).

    PubMed  Google Scholar 

  19. García-Blanco MA, Clerc RG, Sharp PA: The DNA-binding homeo domain of the Oct-2 protein. Genes Devel 3: 739–745 (1989).

    PubMed  Google Scholar 

  20. Goodwin GH, Sanders C, Jones EW: A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38: 14–19 (1973).

    PubMed  Google Scholar 

  21. Gurley WB, Czarnecka E, Barros MDC: Anatomy of a soybean heat shock promoter. In: Verma DPS (ed) Control of Plant Gene Expression. Telford Press (in press).

  22. Gurley WB, Czarnecka E, Nagao RT, Key JL: Upstream sequences required for efficient expression of a soybean heat shock gene. Mol Cell Biol 6: 559–565 (1986).

    PubMed  Google Scholar 

  23. Hager DA, Burgess RR: Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topolsomerase, and other enzymes. Anal Biochem 109: 76–86 (1980).

    PubMed  Google Scholar 

  24. Harrison MJ, Choudhary AD, Dubery I, Lamb CJ, Dixon RA: Stress responses in alfalfa (Medicago sativa L.). 8. Cis-elements and Trans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Plant Mol Biol 16: 877–890 (1991).

    Article  PubMed  Google Scholar 

  25. Harrison MJ, Lawton MA, Lamb CJ, Dixon RA: Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc Natl Acad Sci USA 88: 2515–2519 (1991).

    PubMed  Google Scholar 

  26. Ingersoll JC: Transgenic expression of the alcohol dehydrogenase-1 gene of maize in sunflower. Ph. D. Dissertation, University of Florida (1990).

  27. Jacobsen K, Laursen NB, Jensen EØ, Marcker A, Poulsen C, Marcker KA: HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters. Plant Cell 2: 85–94 (1990).

    Article  PubMed  Google Scholar 

  28. Jensen EØ, Marcker KA, Schell J, de Bruijn FJ: Interaction of a nodule specific, trans-acting factor with distinct DNA elements in the soybean leghaemoglobin lbc 3 5′ upstream region. EMBO J 7: 1265–1271 (1988).

    Google Scholar 

  29. Jofuku KD, Okamuro JK, Goldberg RB: Interaction of an embryo DNA binding protein with a soybean lectin gene upstream region. Nature 328: 734–737 (1987).

    Article  PubMed  Google Scholar 

  30. Johnson PF, McKnight SL: Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839 (1989).

    Google Scholar 

  31. Jordano J, Almoquera C, Thomas TL: A sunflower helianthinin gene upstream sequence ensemble contains an enhancer and sites of nuclear protein interaction. Plant Cell 1: 855–866 (1989).

    Article  PubMed  Google Scholar 

  32. Key JL, Lin CY, Chen YM: Heat shock proteins of higher plants (Soybean seedlings). Proc Natl Acad Sci USA 78: 3526–3530 (1981).

    Google Scholar 

  33. Laemmli UK: cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  34. Laimins LA, Khoury G, Gorman C, Howard B, Gruss P: Host-specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus. Proc Natl Acad Sci USA 79: 6453–6457 (1982).

    PubMed  Google Scholar 

  35. Lam E, Kano-Murakami Y, Gilmartin P, Niner B, Chua N-H: A metal dependent DNA-binding protein interacts with a constitutive element of a light-responsive promoter. Plant Cell 2: 857–866 (1990).

    Article  PubMed  Google Scholar 

  36. Lue NF, Buchman AR, Kornberg RD: Activation of yeast RNA polymerase II transcription by a thymidine-rich upstream element in vitro. Proc Natl Acad Sci USA 86: 486–490 (1989).

    PubMed  Google Scholar 

  37. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  38. Mihara H, Kaiser ET: A chemically synthesized Antennapedia homeo domain binds to a specific DNA sequence. Science 242: 925–927 (1988).

    PubMed  Google Scholar 

  39. Østovold AC, Holtlund J, Laland SG: A novel, highly phosphorylated protein, of high-mobility group type, present in a variety of proliferating and non-proliferating mammalian cells. Eur J Biochem 153: 469–475 (1985).

    PubMed  Google Scholar 

  40. Pedersen TJ, Arwood LJ, Spiker S, Guiltinan MJ, Thompson WF: High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes. Plant Mol Biol 16: 95–104 (1991).

    PubMed  Google Scholar 

  41. Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L: Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J 8: 23–29 (1989).

    Google Scholar 

  42. Scheidereit C, Cromlish JA, Gerster T, Kawakami K, Balmaceda C-G, Currie RA, Roeder RG: A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homoeobox protein. Nature 336: 551–557 (1988).

    Article  PubMed  Google Scholar 

  43. Singh H, Sen R, Baltimore D, Sharp PA: A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319: 154–158 (1986).

    PubMed  Google Scholar 

  44. Southgate R, Ayme A, Voellmy R: Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol 165: 35–57 (1983).

    PubMed  Google Scholar 

  45. Spiker S: High-mobility group chromosomal proteins of wheat. J Biol Chem 259: 12007–12013 (1984).

    PubMed  Google Scholar 

  46. Struhl K: Naturally occurring poly(dAdT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci USA 82: 8419–8423 (1985).

    PubMed  Google Scholar 

  47. Thali M, Müller MM, DeLorenzi M, Matthias P, Bienz M: Drosophila homeotic genes encode transcriptional activators similar to mammalian OTF-2. Nature 336: 598–601 (1988).

    Article  PubMed  Google Scholar 

  48. Vincentz M, Gigot C: HMG-like protein in barley and corn nuclei. Plant Mol Biol 4: 161–168 (1985).

    Google Scholar 

  49. Walker JC, Howard EA, Dennis ES, Peacock WJ: DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc Natl Acad Sci USA 84: 6624–6628 (1987).

    Google Scholar 

  50. Wu C: Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311: 81–84 (1984).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czarnecka, E., Ingersoll, J.C. & Gurley, W.B. AT-rich promoter elements of soybean heat shock gene Gmhsp 17.5E bind two distinct sets of nuclear proteins in vitro . Plant Mol Biol 19, 985–1000 (1992). https://doi.org/10.1007/BF00040530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040530

Key words

Navigation