Skip to main content
Log in

Functional response of suspension feeding anuran larvae to different particle sizes at low concentrations (Amphibia)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The influence of particle size, initial particle concentration and larval stage on the ingestion rate, ‘retention efficiency’, and filtering rate of anuran larvae with varying filter apparatus anatomy and different life histories was investigated for four species. Larvae of premetamorphic Stages 28 and 32 and prometamorphic Stage 40 were selected for filtering experiments on the basis of their different growth rates. Three different sizes of silica gel particles were offered as mock food. Particle concentration was measured photometrically. The Michaelis-Menten model was used to describe the dependency of ingestion rate, filtering rate, and ‘retention efficiency’ upon initial particle concentration, and to calculate maximum ingestion rate, threshold concentration, and the half-saturation constant.

(1) The highest ingestion rates, filtering rates and ‘retention efficiencies’ were achieved by Xenopus laevis larvae, followed by Bufo calamita larvae. Bufo bufo larvae lay at the opposite end of the scale. Rana temporaria larvae were placed between B. calamita and B. bufo larvae. This order is attributed to differences in life histories, especially the different breeding environments in which these larvae occur. (2) The larger the particle size and the older the stage, the greater the tendency toward saturation of the ingestion rate, filtering rate and ‘retention efficiency’. These filtration parameters are graded according to particle size. The ingestion rate (number of particles), filtration rate and ‘retention efficiency’ are greatest for PS3. Ingestion volume is greatest for PS 1. The difference between PS3 and PS2 on the one hand, and PS1 on the other, is often great; for Stage 28 X. laevis it is very great. This shows that larvae ingest large particles more effectively, and that the most effective ingestion takes place at Stages 28 and 32, owing to the growth function of these stages. The ability of larvae to ingest large particles effectively is possibly a very basic phylogenetic characteristic. (3) The threshold concentration is lowest when the particles are at their largest. In accordance with conclusions drawn by other authors, threshold feeding is attributed to regulation by buccal pumping and mucus production. Considerable importance is attributed to threshold feeding with respect to larval adaptation to oligotrophic environments.

Zusammenfassung

Untersucht wurde der Einfluß von Partikelgröße, Ausgangskonzentration und Larvalstadium auf die Ingestionsrate, die ‘Retentionseffizienz’ und die Filtrationsrate von Anurenlarven mit unterschiedlich gebautem Filterapparat und unterschiedlicher Lebensweise. Die Praemetamorphosestadien 28 and 32 und das Prometamorphosestadium 40 wurden wegen ihrer unterschiedlichen Wachstumsraten für die Experimente gewählt. Drei unterschiedlich große Klassen von Silicagelpartikel wurden als Nahrungsattrappe angeboten. Die Partikelkonzentration wurde fotometrisch gemessen. Das Michaelis-Menten Modell wurde verwendet, um die Abhängigkeit der Ingestionsrate, der Filtrationsrate und der ‘Retentionseffiziens’ von der Ausgangskonzentration zu beschreiben und um die maximale Ingestionsrate, die Threshold konzentration und die halbe Sättigungskonstante zu ermitteln.

(1) Die größten Ingestionsraten, Filtrationsraten und ‘Retentionseffizienzen’ wurden von den X. laevis Larven gefolgt von den B. calamita Larven erreicht. Hingegen lagen die B. bufo Larven am entgegengesetzten Ende der Skala. Die R. temporaria Larven lagen zwischen B. calamita und B. bufo. Diese Reihenfolge wird auf die unterschiedlichen Lebensweisen der Larven in Verbindung mit der unterschiedlichen Ökologie der Larvengewässer zurückgefuhrt. (2) Je größer die Partikelgröße und je älter das Larvenstadium ist, desto größer ist die Tendenz zur Sättigung von Ingestionsraten, Filtration sraten und der ‘Retentionsefhzienz’. Diese Parameter der Filtration sind nach der Partikelgröße gestaffelt. Ingestionarate (Partikelzahl), Filtration srate, and ‘Re-tentionsefPlzienz’ sind bei PS3 am größten. Das Ingestion svolumen ist bei PS1 am größten. Der Unterschied zwischen PS3 und PS2 zu PS1 ist in vielen Fällen groß, bei X. laevis Stadium 28 sehr groß. Dies zeigt, daß große Partikel von den Larven am effektivsten aufgenommen werden kön-nen und dies in den Stadien 28 und 32 am effektivsten, was mit der Wachstumsfunktion dieser Stadien zusammenhängt. Möglicherweise ist die effektive Ingestion großer Partikel eine phylogenetisch sehr ursprüngliche Fahigkeit. (3) Die Thresholdkonzentration ist bei großen Partikeln am kleinsten. In Anlehnung an andere Autoren wird das Thresholdfeeding auf die Regulation des vom Buccopharynx gepumpten Wasservolumens und der Schleimproduktion zurückgefuhrt. Dem Thresholdfeeding wird eine große Bedeutung hinsichtlich der Anpassung an oligotrophe Biotope beigemessen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altig, R. & M. McDearman, 1975. Percent assimilation and clearance times of five anuran species. Herpetologica 31: 67–69.

    Google Scholar 

  • Ashworth, R. de B. & B. Crozier, 1972. Standard waters — Recommendations for the preparation of standard waters used for testing pesticidal and other formulations. In G. R. Raw (ed.), CIPAC Monograph I, Collaborative International Pesticides Analytical Council: 1–64.

  • Beebee, T. J. C., 1983. The natterjack toad. Oxford University Press, Oxford, 159 pp.

    Google Scholar 

  • Bergman, M. & S. Richman, 1974. The feeding behavior of Daphnia pulex from Lake Winnebago, Wisconsin. Limnol. Oceanogr. 19: 105–109.

    Google Scholar 

  • Bregulla, D., 1986. Untersuchungen zur Wasserchemie von Kreuzkrötenlaichgewassern. Salamandra 22: 173–179.

    Google Scholar 

  • Bregulla, D., 1988. Temperaturuntersuchungen an Laichgewassern der Kreuzkrbte Bufo calamita Laurenti, 1768. Salamandra 24: 276–286.

    Google Scholar 

  • Breuer, P., 1984. Untersuchungen zur Überlebensrate von Erdkrötenlarven (Bufo bufo) und Grasfroschlarven (Rana temporaria) unter dem Einfluß von Regenbogenforellen (Salmo gairdneri). Thesis, Fachbereich Biologie, Johannes Gutenberg Universität Mainz, 55 pp.

  • Breuer, P. & B. Viertel, 1990. Zur Ökologie von Erdkröten-larven (Bufo bufo) and Grasfroschlarven (Rana temporaria). I. Die Überlebenrate unter dem Einfluß von Regenbogenforellen (Oncorhynchus mykiss). Acta Biologica Benrodis 2: 225–244.

    Google Scholar 

  • Collins, J. P., 1979. Intrapopulation variation in the body size at metamorphosis and timing of metamorphosis in the bullfrog, Rana catesbeiana. Ecology 60: 738–749.

    Article  Google Scholar 

  • Cronin, J. T. & J. Travis, 1986. Size-limited predation on larval Rana areolata (Anura:Ranidae) by two species of backswimmer (Insecta:Hemiptera:Notonectidae). Herpetologica 42: 171–174.

    Google Scholar 

  • Datta Munshi, J. S., K. S. Bilgrami, O. N. Singh & D. K. Singh, 1986. Food and feeding habits of tadpole larva of toad Bufo melanosticus. Envir. Ecol. 4: 109–111.

    Google Scholar 

  • DeBenedictis, P. A., 1974. Interspecific competition between tadpoles of Rana pipiens and Rana sylvatica: an experimental field study. Ecol. Mon. 44: 129–151.

    Article  Google Scholar 

  • Diaz-Paniagua, C., 1985. Larval diets related to morphological characters of five anuran species on the biological reserve of Donana (Huelva, Spain). Amphibia-Reptilia 6: 307–322.

    Google Scholar 

  • Diaz-Paniagua, C., 1989. Larval diets of two anuran species, Pelodytes punctatus and Bufo bufo, in SW Spain. Amphibia-Reptilia 10: 71–75.

    Google Scholar 

  • Dickman, M., 1968. The effect of grazing by tadpoles on the structure of a periphyton community. Ecology 49: 1188–1190.

    Article  Google Scholar 

  • Doyle, R. W., 1979. Ingestion rate of a selective deposit feeder in a complex mixture of particles: testing the energyoptimization hypothesis. Limnol. Oceanogr. 24: 867–874.

    Google Scholar 

  • Eibl-Eibesfeldt, I., 1949. Über das Vorkommen von Schreckstoffen bei Erdkrötenkaulquappen. Experientia 5: 236.

    Article  PubMed  CAS  Google Scholar 

  • Etkin, W., 1968. Hormonal control of amphibian metamorphosis. In Etkin, W. & L. I. Gilbert (eds), Metamorphosis a problem in developmental biology. North Holland Publishing Company, Amsterdam: 313–348.

    Google Scholar 

  • Feder, M., D. B. Seale, M. E. Boraas, R. J. Wassersug & A. G. Gibbs, 1984. Functional conflicts between feeding and gas exchange in suspension-feeding tadpoles, Xenopus laevis. J. exp. Biol. 110: 91–98.

    PubMed  CAS  Google Scholar 

  • Formanowicz jr., D. R., 1986. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42: 367–373.

    Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805–815.

    Google Scholar 

  • Frost, B. W., 1974. Feeding processes at lower trophic levels in pelagic communities. In C. B. Miller (ed), The biology of the oceanic Pacific. Oregon State University: 59–77.

  • Frost, B. W., 1975a. Ingestion by phytoplanktonic grazers as a function of concentration of food. Limnol. Oceanogr. 20: 259–262.

    Google Scholar 

  • Frost, B. W., 1975b. A threshold feeding behavior in Calanus pacificus. Limnol. Oceanogr. 20: 263–266.

    Article  Google Scholar 

  • Funke, A., 1989. Untersuchungen zur Populationsökologie der Erdkröte (Bufo bufo L.) im Stadtgebiet Frankfurt am Main. Thesis, Fachbereich Biologie, J. W. Goethe-Universität Frankfurt, 95 pp.

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 160–183.

    Google Scholar 

  • Gradwell, N., 1970. The function of the ventral velum during gill irrigation in Rana catesbeiana. Can. J. Zool. 48: 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, J. D., 1987. Food and feeding relations of Common Frog and Common Toad tadpoles (Rana temporaria and Bufo bufo) at a pond in Mid-Wales. Herp. J. 1: 141–143.

    Google Scholar 

  • Harvey, H. W., 1937. Note on selective feeding by Calanus. J. mar. Biol. Assoc. 22: 97–100.

    Article  Google Scholar 

  • Hendricks, F. S., 1973. Intestinal contents of Rana pipiens Schreber (Ranidae) larvae. Southw. Natural. 18: 99–101.

    Google Scholar 

  • Heusser, H., 1958. Über die Beziehungen der Erdkröte (Bufo bufo L.) zu ihrem Laichplatz I. Behaviour 12: 208–232.

    Google Scholar 

  • Heusser, H., 1960. Über die Beziehungen der Erdkröte (Bufo bufo L.) zu ihrem Laichplatz II. Behaviour 16: 93–109.

    Google Scholar 

  • Hota, A. K. & M. C. Dash, 1986. Growth and metamorphosis of anuran larvae: effect of diet and temperature. Alytes 5: 165–172.

    Google Scholar 

  • Höll, K., 1979. Wasser. De Gruyter, Berlin, 515 pp.

    Google Scholar 

  • Huber-Pestalozzi, G., 1938. Das Phytoplankton das Süß-wassers, Systematik und Biolgie. In A. Thienemann (ed.), Die Binnengewässer vol 16, part 1. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart: 1–342.

    Google Scholar 

  • Inger, R. F., 1967. The development of a phylogeny of frogs. Evolution 21: 369–384.

    Article  Google Scholar 

  • Jorgensen, C. B., 1966. Biology of suspension feeding. Int. Ser. Monogr. pure appl. Biol. (Zoology) 27: 1–357.

    Google Scholar 

  • Jorgensen, C. B., 1983. Fluid mechanical aspects of suspension feeding. Mar. Ecol. Progr. Ser. 11: 89–103.

    Google Scholar 

  • Kadel, K., 1975. Freilandstudien zur Überlebensrate von Kreuzkrötenlarven (Bufo calamita L.). Revue. suisse Zool. 82: 237–244.

    Google Scholar 

  • Krezoski, J. R., S. C. Mozley & J. A. Robbins, 1978. Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron. Limnol. Oceanogr. 23: 1011–1016.

    Google Scholar 

  • Kulzer, E., 1954. Untersuchungen über die Schreckreaktion bei Erdkrotenkaulquappen (Bufo bufo L.). Z. Vergl. Physiol. 36: 443–463.

    Article  Google Scholar 

  • Lam, R. K. & W. Frost, 1976. Model of copepod filtering response to changes in size and concentration of food. Limnol. Oceanogr. 21: 490–500.

    Google Scholar 

  • Lehman, J. T., 1976. The filter-feeders as an optimal forager, and the predicted shapes of feeding curves. Limnol. Oceanogr. 21: 501–516.

    Google Scholar 

  • Löschenkohl, A., 1985. Freiland-und Laboruntersuchungen zur Ökologie der aquatischen Phase einheimischer Amphipienarten. Doctoral thesis, Formal-und Naturwissenschaftliche Fakultät. Universität Wien, 165 pp.

  • Mahon, J. W., 1965. Some physical factors influencing behaviour of Daphnia magna Straus. Can. J. Zool. 43: 603–612.

    Google Scholar 

  • Mittmann, R., 1989. Die Larvenbiologie von Grasfrosch (Rana t. temporaria LINNAEUS, 1758) and Erdkröte (Bufo b. bufo LINNAEUS, 1758) in verschiedenen Kleingewässern des Niederrheins. Thesis, Fachbereich Biologie, Universität Köln, 121 pp.

  • Muck, P. & W. Lampert, 1980. Feeding of freshwater filterfeeders at very low concentrations: Poor evidence for ‘threshold feeding’ and ‘optimal foraging’ in Daphnia longispina and Eudiaptomus gracilis. J. Plankton Res. 2: 367–379.

    Google Scholar 

  • Mullin, M. M., E. F. Steward & F. J. Fuglister, 1975. Ingestion by planktonic grazers as a function of concentration of food. Limnol. Oceanogr. 5: 259–262.

    Google Scholar 

  • Murray, D. L., 1990. The effects of food and density on growth and metamorphosis in larval wood frogs (Rana sylvatica) from central Labrador. Can. J. Zool. 68: 1221–1226.

    Google Scholar 

  • Nieuwkoop, P. D. & J. Faber, 1956. Normal table of Xenopus laevis (Daudin) — a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. North-Holland Publishing Company, Amsterdam, 243 pp.

    Google Scholar 

  • Orton, G. L., 1953. The systematics of vertebrate larvae. Syst. Zool. 2: 63–75.

    Article  Google Scholar 

  • Parsons, T. R., R. J. LeBrasseur & J. D. Fulton, 1967. Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. J. Oceanogr. Soc. Jap. 23: 10–17.

    Google Scholar 

  • Pfeiffer, W., 1966. Die Verbreitung der Schreckreaktion bei Kaulquappen und die Herkunft des Schreckstoffes. Z. Vergl. Physiol. 52: 79–98.

    Article  Google Scholar 

  • Polls Pelaz, M. & R. Pourriot, 1988. Une apporoche de la fonction de filtration des tetards de grenouille verte (Rana ridibunda). Vie Milieu 38: 293–298.

    Google Scholar 

  • Randlov, A. & H. U. Riisgard, 1979. Efficiency of particle retention and filtration rate in four species of ascidians. Mar. Ecol. 1: 55–59.

    Article  Google Scholar 

  • Rigler, F. H., 1961. The relation between concentration of food and feeding rate of Daphnia magna Straus. Can. J. Zool. 39: 857–868.

    Google Scholar 

  • Sabnis, J. H. & Ku. S. M. Kuthe, 1980. Observation on food and growth of Bufo melanosticus tadpole. J. Bombay Nat. Hist. Soc. 77: 21–25.

    Google Scholar 

  • Sahu, A. K. & M. K. Kahre, 1988. Food and feeding habits of Rana alticola Boulenger (Anura:Ranidae) during different stages of metamorphosis. J Adv. Zool. 9: 97–104.

    Google Scholar 

  • Savage, R. M., 1961. The ecology and life history of the common frog (Rana temporaria temporaria). Pitman, London, 221 pp.

    Google Scholar 

  • Scheinberg, H., 1984. Kupfer. In E. Merian (ed), Metalle in der Umwelt. Verlag Chemie, Weinheim, Deerfield Beach, Basel: 451–463.

    Google Scholar 

  • Schwörbel, J., 1966. Methoden der Hydrobiolgie. Franckh'sche Verlagshandlung, Stuttgart, 207 pp.

    Google Scholar 

  • Seale, D. B., 1980. Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61: 1531–1550.

    Article  Google Scholar 

  • Seale, D. B. & H. Beckvar, 1980. The comparative ability of anuran larvae (genera: Hyla, Bufo, and Rana) to ingest suspended blue-green algae. Copeia 1980: 495–503.

    Article  Google Scholar 

  • Seale, D. B. & R. J. Wassersug, 1979. Suspension feeding dynamics of anuran larvae related to their functional morphology. Oecologia 39: 259–272.

    Article  Google Scholar 

  • Seale, D. B., K. Hoff & R. Wassersug, 1982. Xenopus laevis larvae (Amphibia,Anura) as model suspension feeders. Hydrobiologia 87: 161–169.

    Google Scholar 

  • Semlitsch, R. D., 1990. Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can. J. Zool. 68: 1027–1030.

    Google Scholar 

  • Semlitsch, R. D. & J. W. Gibbons, 1988. Fish predation in size-structured populations of treefrog tadpoles. Oecologia 75: 321–326.

    Article  Google Scholar 

  • Siemens, A. G., 1981/82. Siemens Opto-Halbleiter Datenbuch. München, 730 pp.

  • Strijbosch, H., 1979. Habitat selection of amphibians during their aquatic phase. Oikos 33: 363–372.

    Google Scholar 

  • Tevini, M. & D. P. Häder, 1985. Allgemeine Photobiologie. Georg Thieme Verlag, Stuttgart New York, 348 pp.

    Google Scholar 

  • Travis, J., 1983. Variation in growth and survival of Hyla gratiosa larvae in experimental enclosures. Copeia 1983: 232–237.

    Article  Google Scholar 

  • Utermohl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. theor. angew. Limnol. 9: 1–38.

    Google Scholar 

  • Viertel, B., 1976. Die Amphibien Rheinhessens unter besonderer Berücksichtigung der Umgebung von Oppenheim. Mz. Naturwiss. Archiv. 15: 183–221.

    Google Scholar 

  • Viertel, B., 1978. Populationsökologische Untersuchungen an Erdkrötenlarven (Bufo bufo L.). Doctoral Thesis, Fachbereich Biologie, Johannes Gutenberg Universität Mainz, 68 pp.

  • Viertel, B., 1981. Wachstumsraten, Gewichtszustandswert und Ätilität bei Erdkrötenlarven (Bufo bufo L.) im Freiland (Amphibia:Salientia:Bufonidae). Salamandra 17: 20–42.

    Google Scholar 

  • Viertel, B., 1985. The filter apparatus of Rana temporaria and Bufo bufo larvae (Amphibia,Anura). Zoomorphology 105: 345–355.

    Article  Google Scholar 

  • Viertel, B., 1987. The filter apparatus of Xenopus laevis, Bombina variegata, and Bufo calamita (Amphibia,Anura): a comparison of different larval types. Zool. Jb. Anat. 115: 425–452.

    Google Scholar 

  • Viertel, B., 1989. The filter apparatus of anuran larvae. —Aspects of the filtering mechanism. In: Splechtna, H. & H. Hilgers (eds). Trends in vertebrate morphology. Proc. 2nd Int. Symp. Vert. Morph. Vienna 526–533 pp.

  • Viertel, B., 1990. Suspension feeding of anuran larvae at low concentrations of Chlorella algae (Amphibia,Anura). Oecologia 85: 167–177.

    Article  Google Scholar 

  • Viertel, B., 1991. The ontogeny of the filter apparatus of anuran larvae (Amphibia,Anura). Zoomorphology 110: 239–266.

    Article  Google Scholar 

  • Voris, H. K. & J. P. Bacon jr., 1966. Differential predation on tadpoles. Copeia 1966: 594–598.

    Article  Google Scholar 

  • Waringer-Loschenkohl, A., 1988. Sukzession und Wachstum von Amphibienlarven in vier Kleingewässern in Wien und in Niederosterreich. Salamandra 24: 287–301.

    Google Scholar 

  • Wassersug, R. J., 1972. The mechanism of ultraplanktonic entrapment in anuran larvae. J. Morphol. 137: 279–288.

    Article  Google Scholar 

  • Wassersug, R. J. & K. Hoff, 1979. A comparative study of the buccal pumping mechanism of tadpoles. Biol. J. Linn. Soc. 12: 225–259.

    Google Scholar 

  • Wassersug, R. J. & K. Rosenberg, 1979. Surface anatomy of branchial food traps of tadpoles: a comparative study. J. Morphol. 159: 393–425.

    Article  Google Scholar 

  • Weigmann, D. B., 1982. Relationships between production and abundance of ranid (Rana pipiens, R. catesbeiana, and R. calamitans) tadpoles and the effects of tadpole grazing on algal productivity and diversity and on phosphorus, nitrogen, and organic carbon. Doctoral Thesis, Michigan State University, pp. 386 (see also Diss. Abstr. Int. 43 [1983]: 2803-B).

  • Wilbur, H. M., 1977. Interactions of food level and population density in Rana sylvatica. Ecology 58: 206–209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viertel, B. Functional response of suspension feeding anuran larvae to different particle sizes at low concentrations (Amphibia). Hydrobiologia 234, 151–173 (1992). https://doi.org/10.1007/BF00014247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014247

Key words

Navigation