Skip to main content

Tip-Enhanced Raman Spectroscopy

  • Chapter
  • First Online:
Raman Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 248))

  • 229 Accesses

Abstract

Tip-enhanced Raman spectroscopy (TERS) is a cutting-edge analytical technique that combines the power of Raman spectroscopy with apertureless near-field optical microscopy (s-SNOM). It uses a metallic tip that resonates with the local mode of the surface plasmon to enhance Raman signals by several orders of magnitude. This leads to the detection of weak vibrational modes that are not observable by conventional Raman spectroscopy. TERS has found numerous applications in various fields. In chemistry, TERS has been used to study catalytic reactions and investigate the properties of single molecules. In nanotechnology, TERS enables imaging of the structural and chemical properties of nanomaterials. TERS also has potential applications in medical diagnostics and therapeutics, as it allows the detection and analysis of biomolecules in high sensitivity and non-destructive manner. In biomedicine, TERS is used to investigate biomolecules, such as proteins, DNA, and lipids, at single-molecule level. In this Chapter, the history, basic principle, common experiment setup, application, and outlook of TERS technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting to mention in here that the Raman effect was also discovered in 1928 [1]. It was not, however, until 70 years later that Raman and sSNOM techniques were finally combined as TERS.

  2. 2.

    The following discussion applies for both aperture and scattering SNOM.

  3. 3.

    Also known as plane wave spectrum.

  4. 4.

    \({\varvec{E}}({\varvec{r}})\) Is also known as “total field”. The concept of “total field” is very important in the numerical simulation of electromagnetic (EM) field.

  5. 5.

    Thus, “wavelength” is not a good physical quantity to define light as it depends on the refractive index of medium. However, due to historical and customary reasons, “wavelength” is still the most common concept for the definition of light.

  6. 6.

    Also known as optical transfer function (OTF).

  7. 7.

    Imaginary part of refractive index is zero.

  8. 8.

    Or a sub wavelength aperture, which is actually Synge’s idea [13]. See Fig. 11.2i(a).

  9. 9.

    The Structured Illumination Microscopy (SIM) also relies on the same working principle.

  10. 10.

    Also known as the Transverse Electric (TE) mode.

  11. 11.

    Also known as the Transverse Magnetic (TM) mode.

  12. 12.

    Also known as p-polarized.

  13. 13.

    If the readers are interested in the numerical simulation of EM field, the online course (https://empossible.net/) and latest publication “Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB” by Raymond C. Rumpf are strongly recommended.

  14. 14.

    It is worth to stress in here that the laser energy is further confined by the TERS probe (see Fig. 11.8 and associated discussion).

  15. 15.

    More specifically, \({{\varvec{E}}}_{{\varvec{z}}}\) component is highest with p-polarized illumination with NA ~ 1. For more detail, please see the Sect. 11.2 Evanescent fields from Principles of Nano-Optics [21].

  16. 16.

    It should be “total field” (near-field plus far-field, see Fig. 11.3i(a)) more precisely. However, due to historical reason, it is commonly just referred to as “near-field”.

  17. 17.

    Background suppression can also be achieved via evanescent field excitation, for more detail see Fig. 11.10.

  18. 18.

    The beam profile (\({\left|{{\varvec{E}}}_{0}\right|}^{2}\)) of NA = 1.4 focused 532 nm wavelength light at glass/air interface is shown in Fig. 11.8.

  19. 19.

    More precisely, the NA > 1 component of the focused light mainly contributes the excitation, see Sect. 11.3.1 and Fig. 11.10.

  20. 20.

    See Fig. 11.10iii(a) and associated discussion.

  21. 21.

    Due to the uniform properties and good stability, low-dimensional materials (especially graphene, SWCNT, TMDs) are ideal samples for evaluating the TERS enhancement factor (\({\left|{\varvec{E}}/{{\varvec{E}}}_{0}\right|}^{4}\)) [40, 58, 87].

References

  1. C.V. Raman, K.S. Krishnan, Nature 121, 501 (1928)

    Article  ADS  Google Scholar 

  2. E.H. Hasdeo, A.R. Nugraha, M.S. Dresselhaus, R. Saito, Phys. Rev. B 94, 075104 (2016)

    Article  ADS  Google Scholar 

  3. T. Dieing, O. Hollricher, J. Toporski, Confocal Raman Microscopy, vol. 158 (Springer, 2011)

    Google Scholar 

  4. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008)

    Article  Google Scholar 

  5. V. Markel, V. Shalaev, P. Zhang, W. Huynh, L. Tay, T. Haslett, M. Moskovits, Phys. Rev. B 59, 10903 (1999)

    Article  ADS  Google Scholar 

  6. S. Grésillon et al., Phys. Rev. Lett. 82, 4520 (1999)

    Article  ADS  Google Scholar 

  7. J.-X. Cheng and X.S. Xie, (ACS Publications, 2004), pp. 827

    Google Scholar 

  8. P. Verma, Chem. Rev. 117, 6447 (2017)

    Article  Google Scholar 

  9. T. Deckert-Gaudig, A. Taguchi, S. Kawata, V. Deckert, Chem. Soc. Rev. 46, 4077 (2017)

    Article  Google Scholar 

  10. L. Langelüddecke, P. Singh, V. Deckert, Appl. Spectrosc. 69, 1357 (2015)

    Article  ADS  Google Scholar 

  11. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977)

    Article  Google Scholar 

  12. J. Wessel, JOSA B 2, 1538 (1985)

    Article  ADS  Google Scholar 

  13. E. Synge, London Edinburgh Dublin Philos. Mag. J. Sci. 6, 356 (1928)

    Google Scholar 

  14. P. Bazylewski, S. Ezugwu, G. Fanchini, Appl. Sci. 7, 973 (2017)

    Article  Google Scholar 

  15. D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984)

    Article  ADS  Google Scholar 

  16. D.P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, Appl. Phys. Lett. 64, 1768 (1994)

    Article  ADS  Google Scholar 

  17. D.A. Smith, S. Webster, M. Ayad, S.D. Evans, D. Fogherty, D. Batchelder, Ultramicroscopy 61, 247 (1995)

    Article  Google Scholar 

  18. C. Jahncke, M. Paesler, H. Hallen, Appl. Phys. Lett. 67, 2483 (1995)

    Article  ADS  Google Scholar 

  19. F. Zenhausern, M. O’boyle, H. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994)

    Google Scholar 

  20. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Appl. Phys. Lett. 40, 178 (1982)

    Article  ADS  Google Scholar 

  21. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge university press, 2012)

    Google Scholar 

  22. R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318, 131 (2000)

    Article  ADS  Google Scholar 

  23. M.S. Anderson, Appl. Phys. Lett. 76, 3130 (2000)

    Article  ADS  Google Scholar 

  24. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Opt. Commun. 183, 333 (2000)

    Article  ADS  Google Scholar 

  25. R.C. Rumpf, Electromagnetic analysis using finite difference time domain: metals and alternative grid schemes. EMPossible, pp. 12–13. https://empossible.thinkific.com/bundles/1d-2d-finite-difference-time-domain-with-matlab

  26. S. Zhu, A. Yu, D. Hawley, R. Roy, Am. J. Phys. 54, 601 (1986)

    Article  ADS  Google Scholar 

  27. P. Busch, T. Heinonen, P. Lahti, Phys. Rep. 452, 155 (2007)

    Article  ADS  Google Scholar 

  28. F. H’dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, P. Royer, J. Microsc. 209, 214 (2003)

    Google Scholar 

  29. T. Treebupachatsakul, S. Shinnakerdchoke, S. Pechprasarn, Sensors 21, 6164 (2021)

    Article  ADS  Google Scholar 

  30. M. Esmann et al., Nat. Nanotechnol. 14, 698 (2019)

    Article  ADS  Google Scholar 

  31. K. Zhang et al., Anal. Chem. 93, 7699 (2021)

    Article  Google Scholar 

  32. S. Boroviks et al., Nat. Commun. 13, 3105 (2022)

    Article  ADS  Google Scholar 

  33. S. Berweger, J.M. Atkin, R.L. Olmon, M.B. Raschke, J. Phys. Chem. Lett. 1, 3427 (2010)

    Article  Google Scholar 

  34. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Google Scholar 

  35. M. Esmann, S.F. Becker, B.B. da Cunha, J.H. Brauer, R. Vogelgesang, P. Groß, C. Lienau, Beilstein J. Nanotechnol. 4, 603 (2013)

    Article  Google Scholar 

  36. M. Esmann, Probing single metal nanoparticles with a novel adiabatic-nanofocusing scanning near-field optical microscope (Carl von Ossietzky Universität Oldenburg, 2017)

    Google Scholar 

  37. B. Knoll, F. Keilmann, Opt. Commun. 182, 321 (2000)

    Article  ADS  Google Scholar 

  38. T. Wriedt, The Mie theory: basics and Applications, vol 53 (2012)

    Google Scholar 

  39. Jinxin Zhan. A new broadband, interferometric scanning near-field spectroscopy technique for probing the time-domain response of single nanoparticles (Carl von Ossietzky Universität Oldenburg, 2023)

    Google Scholar 

  40. Y.C. Martin, H.F. Hamann, H.K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001)

    Article  ADS  Google Scholar 

  41. B. Piglosiewicz, S. Schmidt, D.J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, C. Lienau, Nat. Photonics 8, 37 (2014)

    Article  ADS  Google Scholar 

  42. M. Kerker, D.-S. Wang, H. Chew, Appl. Opt. 19, 3373 (1980)

    Article  ADS  Google Scholar 

  43. A. Taguchi, J. Yu, P. Verma, S. Kawata, Nanoscale 7, 17424 (2015)

    Article  ADS  Google Scholar 

  44. A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003)

    Article  ADS  Google Scholar 

  45. K. Kim, J.K. Yoon, J. Phys. Chem. B 109, 20731 (2005)

    Article  Google Scholar 

  46. K. Kitamura, K. Sakai, S. Noda, Opt. Express 18, 4518 (2010)

    Article  ADS  Google Scholar 

  47. B. Yang et al., Angew. Chem. Int. Ed. 62, e202218799 (2023)

    Article  Google Scholar 

  48. L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, M. Sun, J. Raman Spectrosc. 45, 533 (2014)

    Article  ADS  Google Scholar 

  49. M. Sun, S. Liu, M. Chen, H. Xu, J. Raman Spectrosc. 40, 137 (2009)

    Article  ADS  Google Scholar 

  50. M. Sun, S. Liu, Z. Li, J. Duan, M. Chen, H. Xu, J. Raman Spectrosc. 40, 1172 (2009)

    Article  ADS  Google Scholar 

  51. M. Sun, S. Wan, Y. Liu, Y. Jia, H. Xu, J. Raman Spectrosc. 39, 402 (2008)

    Article  ADS  Google Scholar 

  52. M. Sun, Y. Fang, Z. Yang, H. Xu, Phys. Chem. Chem. Phys. 11, 9412 (2009)

    Article  Google Scholar 

  53. M. Sun, J. Chem. Phys. 124 (2006)

    Google Scholar 

  54. M. Richard-Lacroix, M. Küllmer, A.L. Gaus, C. Neumann, C. Tontsch, M. von Delius, V. Deckert, A. Turchanin, Adv. Mater. Interfaces 9, 2102389 (2022)

    Article  Google Scholar 

  55. S.M. Mansfield, G. Kino, Appl. Phys. Lett. 57, 2615 (1990)

    Article  ADS  Google Scholar 

  56. B. Klarenaar, F. Brehmer, S. Welzel, H. Van Der Meiden, M. Van De Sanden, R. Engeln, Rev. Sci. Instrum. 86 (2015)

    Google Scholar 

  57. Q. Liu, S. Kim, X. Ma, N. Yu, Y. Zhu, S. Deng, R. Yan, H. Zhao, M. Liu, Nanoscale 11, 7790 (2019)

    Article  Google Scholar 

  58. R. Kato, K. Taguchi, R. Yadav, T. Umakoshi, P. Verma, Nanotechnology 31, 335207 (2020)

    Article  Google Scholar 

  59. Y.P. Huang et al., Angew. Chem. 130, 7645 (2018)

    Article  ADS  Google Scholar 

  60. A. Capaccio, A. Sasso, O. Tarallo, G. Rusciano, Nanoscale 12, 24376 (2020)

    Article  Google Scholar 

  61. T. Umakoshi, T.-A. Yano, Y. Saito, P. Verma, Appl. Phys. Express 5, 052001 (2012)

    Article  ADS  Google Scholar 

  62. X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, M. Liu, Nano Lett. 19, 100 (2018)

    Article  ADS  Google Scholar 

  63. H. Furukawa, S. Kawata, Opt. Commun. 148, 221 (1998)

    Article  ADS  Google Scholar 

  64. E.J. Sánchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)

    Article  ADS  Google Scholar 

  65. B.-S. Yeo, W. Zhang, C. Vannier, R. Zenobi, Appl. Spectrosc. 60, 1142 (2006)

    Article  ADS  Google Scholar 

  66. S.A. Maier, P.G. Kik, H.A. Atwater, Appl. Phys. Lett. 81, 1714 (2002)

    Article  ADS  Google Scholar 

  67. M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, R16356 (2000)

    Article  ADS  Google Scholar 

  68. S. Kawata, A. Ono, P. Verma, Nat. Photonics 2, 438 (2008)

    Article  Google Scholar 

  69. J.A. Fan et al., Science 328, 1135 (2010)

    Google Scholar 

  70. S. Trautmann, M. Richard-Lacroix, A. Dathe, H. Schneidewind, J. Dellith, W. Fritzsche, V. Deckert, Nanoscale 10, 9830 (2018)

    Article  Google Scholar 

  71. A. Alabastri, X. Yang, A. Manjavacas, H.O. Everitt, P. Nordlander, ACS Nano 10, 4835 (2016)

    Article  Google Scholar 

  72. L. He, M. Rahaman, T.I. Madeira, D.R. Zahn, Nanomaterials 11, 376 (2021)

    Article  Google Scholar 

  73. L. Novotny, N. Van Hulst, Nat. Photonics 5, 83 (2011)

    Article  ADS  Google Scholar 

  74. T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, J. Microsc. 202, 72 (2001)

    Article  MathSciNet  Google Scholar 

  75. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  76. I. Maouli, A. Taguchi, Y. Saito, S. Kawata, P. Verma, Appl. Phys. Express 8, 032401 (2015)

    Article  ADS  Google Scholar 

  77. E.M. van Schrojenstein Lantman, T. Deckert-Gaudig, A. J. Mank, V. Deckert, B.M. Weckhuysen, Nat. Nanotechnol. 7, 583 (2012)

    Google Scholar 

  78. C.C. Neacsu, J. Dreyer, N. Behr, M.B. Raschke, Phys. Rev. B 73, 193406 (2006)

    Article  ADS  Google Scholar 

  79. J. Steidtner, B. Pettinger, Phys. Rev. Lett. 100, 236101 (2008)

    Article  ADS  Google Scholar 

  80. S. Jiang, Y. Zhang, R. Zhang, C. Hu, M. Liao, Y. Luo, J. Yang, Z. Dong, J. Hou, Nat. Nanotechnol. 10, 865 (2015)

    Article  ADS  Google Scholar 

  81. R.B. Jaculbia et al., Nat. Nanotechnol. 15, 105 (2020)

    Article  ADS  Google Scholar 

  82. E.C. Le Ru, P.G. Etchegoin, Annu. Rev. Phys. Chem. 63, 65 (2012)

    Article  ADS  Google Scholar 

  83. K. Kim, Y.M. Lee, H.B. Lee, Y. Park, T.Y. Bae, Y.M. Jung, C.H. Choi, K.S. Shin, J. Raman Spectrosc. 41, 187 (2010)

    Article  ADS  Google Scholar 

  84. J.-H. Zhong, X. Jin, L. Meng, X. Wang, H.-S. Su, Z.-L. Yang, C.T. Williams, B. Ren, Nat. Nanotechnol. 12, 132 (2017)

    Article  ADS  Google Scholar 

  85. N. Kumar, C.S. Wondergem, A.J. Wain, B.M. Weckhuysen, J. Phys. Chem. Lett. 10, 1669 (2019)

    Article  Google Scholar 

  86. K.-D. Park, E.A. Muller, V. Kravtsov, P.M. Sass, J. Dreyer, J.M. Atkin, M.B. Raschke, Nano Lett. 16, 479 (2016)

    Article  ADS  Google Scholar 

  87. M. Sun, Z. Zhang, H. Zheng, H. Xu, Sci. Rep. 2, 647 (2012)

    Article  ADS  Google Scholar 

  88. R.-P. Wang et al., J. Phys. Chem. Lett. 12, 1961 (2021)

    Article  Google Scholar 

  89. R. Zhang et al., Nature 498, 82 (2013)

    Article  ADS  Google Scholar 

  90. S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Chem. Soc. Rev. 46, 4042 (2017)

    Article  Google Scholar 

  91. F. Benz et al., Science 354, 726 (2016)

    Article  ADS  Google Scholar 

  92. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, Nat. Rev. Mater. 2, 1 (2017)

    Article  Google Scholar 

  93. A. Turchanin, A. Gölzhäuser, Adv. Mater. 28, 6075 (2016)

    Article  Google Scholar 

  94. T.-X. Huang et al., Nat. Commun. 10, 5544 (2019)

    Article  ADS  Google Scholar 

  95. R. Meyer, S. Trautmann, K. Rezaei, A. George, A. Turchanin, V. Deckert, ACS Photonics 6, 1191 (2019)

    Article  Google Scholar 

  96. A.A. Sifat, J. Jahng, E.O. Potma, Chem. Soc. Rev. 51, 4208 (2022)

    Article  Google Scholar 

  97. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  98. N. Kumar, W. Su, M. Veselý, B.M. Weckhuysen, A.J. Pollard, A.J. Wain, Nanoscale 10, 1815 (2018)

    Article  Google Scholar 

  99. D. Roy, J. Wang, C. Williams, J. Appl. Phys. 105 (2009)

    Google Scholar 

  100. Z. He et al., J. Am. Chem. Soc. 141, 753 (2018)

    Article  Google Scholar 

  101. Z. He, W. Qiu, M.E. Kizer, J. Wang, W. Chen, A.V. Sokolov, X. Wang, J. Hu, M.O. Scully, ACS Photonics 8, 424 (2020)

    Article  Google Scholar 

  102. V. Deckert, T. Deckert-Gaudig, D. Cialla-May, J. Popp, R. Zell, S. Deinhard-Emmer, A.V. Sokolov, Z. Yi, M.O. Scully, Proc. Natl. Acad. Sci. 117, 27820 (2020)

    Article  ADS  Google Scholar 

  103. E. Bailo, V. Deckert, Angew. Chem. Int. Ed. 47, 1658 (2008)

    Article  Google Scholar 

  104. Y. Pandey, N. Kumar, G. Goubert, R. Zenobi, Angew. Chem. Int. Ed. 60, 19041 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

WW thanks for financial support through the DFG, CRC-TRR 234 “CataLight” Project C4. VD appreciates financial support via the DFG Collaborative Research Center SFB 1375 (NOA) Project CO2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Deckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Deckert, V. (2024). Tip-Enhanced Raman Spectroscopy. In: Singh, D.K., Kumar Mishra, A., Materny, A. (eds) Raman Spectroscopy. Springer Series in Optical Sciences, vol 248. Springer, Singapore. https://doi.org/10.1007/978-981-97-1703-3_11

Download citation

Publish with us

Policies and ethics