Skip to main content

Local Binary Pattern-Based Texture Analysis to Predict IDH Genotypes of Glioma Cancer Using Supervised Machine Learning Classifiers

  • Conference paper
  • First Online:
Emerging Technologies in Data Mining and Information Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1300))

  • 932 Accesses

Abstract

Nowadays, machine learning-based quantified assessment of glioma has recently gained more attention by researchers in the field of medical image analysis. Such analysis makes use of either hand-crafted radiographic features with radiomic-based methods or auto-extracted features using deep learning-based methods. Radiomic-based methods cover a wide spectrum of radiographic features including texture, shape, volume, intensity, histogram, etc. The objective of the paper is to demonstrate the discriminative role of textures for molecular categorization of glioma using supervised machine learning techniques. This work aims to make state-of-the-art machine learning solutions available for magnetic resonance imaging (MRI)-based genomic analysis of glioma as a simple and sufficient technique based on single feature type, i.e., textures. The potential of this work demonstrates importance of texture features using simple, computationally efficient local binary pattern (LBP) method for isocitrate dehydrogenase (IDH)-based discrimination of glioma as IDH mutant and IDH wild type. Further, such texture-based discriminative analysis alone can definitely facilitate an immediate recommendation for further diagnostic decisions and personalized treatment plans for glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis, D., Perry, A., Reifenberger, G., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016)

    Google Scholar 

  2. Huang, J., Yu, J., Tu, L., Luo, N.H.: Isocitrate dehydrogenase mutations in glioma: from basic discovery to therapeutics development. Front. Oncol. 9 (2019). https://doi.org/10.3389/fonc.2019.00506

  3. Cohen, A., Holmen, S., Colman, H.: IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. 13(5), 345 (2013)

    Google Scholar 

  4. Bauer, S., Wiest, R.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97–R129 (2013)

    Google Scholar 

  5. Wang, Q., Zhang, J., Li, F., Xu, X., Xu, B.: Diagnostic performance of clinical properties and conventional magnetic resonance imaging for determining the IDH1 mutation status in glioblastoma: a retrospective study. PeerJ 7, e7154 (2019)

    Google Scholar 

  6. Qi, S., Yu, L.: Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol. Lett. 7, 1895–1902 (2014)

    Google Scholar 

  7. Asodekar, B., Gore, S.: (2019) Brain tumor classification using shape analysis of MRI images. In: Proceedings of International Conference on Communication and Information Processing (ICCIP) (2019). Available via SSRN. https://ssrn.com/abstract=3425335 or http://dx.doi.org/10.2139/ssrn.3425335

  8. Yu, J., Shi, Z., Lian, Y., et al.: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur. Radiol. 27(8) (2016). https://doi.org/10.1007/s00330-016-4653-3

  9. Chang, K., Bai, H., Zhou, H., et al.: Residual convolutional neural network for the determination of IDH status in low and high grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018)

    Article  Google Scholar 

  10. Ahmad, A., Sarkar, S., Shah, A., et al.: Predictive and discriminative localization of IDH genotype in high grade gliomas using deep convolutional neural nets. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). https://doi.org/10.1109/ISBI.2019.8759313

  11. Jakola, A., Zhang, Y.H., Skjulsvik, A., et al.: Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin. Neurol. Neurosur. 164, 114–120 (2017)

    Article  Google Scholar 

  12. Qiang, T., Yan, L., Xi, Z., et al.: Radiomics strategy for glioma grading using texture features from multiparametric MRI. J. Magn. Reson. Imaging 48(6), 1528–1538 (2018)

    Google Scholar 

  13. Eichinger, P., Alberts, E.: Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci. Rep. 7, 13396 (2017). https://doi.org/10.1038/s41598-017-13679-4

    Article  Google Scholar 

  14. Yang, D., Rao, G.: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 42(11), 6725–6735 (2015)

    Article  Google Scholar 

  15. Zhou, H., Chang, K., Bai, H.X.: Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low and high grade gliomas. J. Neuro-Oncol. 142(2), 299–307 (2019)

    Article  Google Scholar 

  16. Jagtap, J., Saini, J., Vani, S., et al.: Predicting the molecular subtypes in gliomas using T2–weighted MRI. In: Proceedings of 2nd International Conference on Data Engineering and Communication Technology, Adv Intell Syst Comput Series Springer, Singapore, vol. 828, pp. 65–73 (2019)

    Google Scholar 

  17. Wu, S., Meng, J.: Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas. J. Cancer Res. Clin. 145, 543–550 (2019)

    Article  Google Scholar 

  18. Kim, D., Wang, N., Ravikumar, V., et al.: Prediction of 1p/19q codeletion in diffuse glioma patients using pre-operative multiparametric magnetic resonance imaging. Front. Comput. Neurosc. 13, 52 (2019)

    Article  Google Scholar 

  19. Zhang, B., Chang, K., Ramkissoon, S., et al.: Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncol. 19(1), 109–117 (2016)

    Article  Google Scholar 

  20. Rathore, S., Akbar, H., et al.: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 8, 5087 (2018). https://doi.org/10.1038/s41598-018-22739-2

    Article  Google Scholar 

  21. Lu, C.F., Hsu, F.T., et al.: Machine learning-based radiomics for molecular subtyping of gliomas. Clin. Cancer Res. 24(18), 4429–4436 (2018)

    Article  Google Scholar 

  22. Bisdas, S., Shenet, H., et al.: Texture analysis and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci. Rep. 8, 6108 (2018)

    Article  Google Scholar 

  23. Chang, P., Grinband, X.J., Weinberg, X.B.D.: Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am. J. Neuroradiol. 39(7), 1201–1207 (2018)

    Article  Google Scholar 

  24. Yang, Y., Yan, L.F., Zhang, X.: Glioma grading on conventional MR images: a deep learning study with transfer learning. Front. Neurosci. 12, 804 (2018)

    Article  Google Scholar 

  25. Akkus, Z., Ali, I., Sedlar, J.: Predicting 1p19q chromosomal deletion of low-grade gliomas from MR images using deep learning. J. Digit Imaging 30(4), 469–476 (2017)

    Article  Google Scholar 

  26. Li, Z., Wang, Y., Yu, J., Guo, Y., Cao, W.: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci. Rep. 7, 5467 (2017)

    Article  Google Scholar 

  27. Liang, S., Zhang, R., Liang, D., et al.: Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes (Basel) 9(8), 382 (2018)

    Google Scholar 

  28. Clark, K., Vendt, B., Smith, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digital Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  29. Pedano, N., Flanders, A., Scarpace, L., et al.: Radiology data from The Cancer Genome Atlas Low Grade Glioma [TCGA–LGG]. The Cancer Imaging Archive (2016). http://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK

  30. Scarpace, L., Mikkelsen, T., Soonmee, C., et al.: Radiology data from The Cancer Genome Atlas glioblastoma multiforme [TCGA–GBM]. The Cancer Imaging Archive (2016). http://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9

  31. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre–operative scans of the TCGA–LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  32. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA–GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  33. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  34. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 19(3), 51–59 (1996)

    Article  Google Scholar 

  35. Houman, S., Omid, S., Joshua, B., et al.: Artificial intelligence in the management of glioma: era of personalized medicine. Front. Oncol. 9, 768 (2019). https://doi.org/10.3389/fonc.2019.00768

    Article  Google Scholar 

  36. Cho, H., Lee, S.H., Kim, J., Park, H.: Classification of the glioma grading using radiomics analysis. PeerJ 6, e5982 (2018). https://doi.org/10.7717/peerj.5982

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Jagtap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gore, S., Jagtap, J. (2021). Local Binary Pattern-Based Texture Analysis to Predict IDH Genotypes of Glioma Cancer Using Supervised Machine Learning Classifiers. In: Hassanien, A.E., Bhattacharyya, S., Chakrabati, S., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 1300. Springer, Singapore. https://doi.org/10.1007/978-981-33-4367-2_1

Download citation

Publish with us

Policies and ethics