Skip to main content

Structures and Molecular Composition of Schmidt–Lanterman Incisures

  • Chapter
  • First Online:
Myelin

Abstract

Schmidt–Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.1G–membrane protein palmitoylated 6 (MPP6)–cell adhesion molecule 4 (CADM4). 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. Motor activity and myelin ultrastructures were abnormal in 4.1G-deficient mice, indicating the 4.1G function as a signal for proper formation of myelin in PNS. Thus, SLI probably has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cell myelin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey NB, Huang L, Ormonde PA, Baumgard ML, Pero R, Byreddy DV, Tavtigian SV, Bartel PL (2000) Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding. Cancer Res 60:35–37

    CAS  PubMed  Google Scholar 

  • Alanne MH, Pummi K, Heape AM, Grenman R, Peltonen J, Peltonen S (2009) Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 57:523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Leefmans FJ, Leon-Olea M, Mendoza-Sotelo J, Alvarez FJ, Anton B, Garduno R (2001) Immunolocalization of the Na+-K+-2Cl cotransporter in peripheral nervous tissue of vertebrates. Neuroscience 104:569–582

    Article  CAS  PubMed  Google Scholar 

  • Baines AJ (2010a) Evolution of the spectrin-based membrane skeleton. Transfusion Clinique Biol 17:95–103

    Article  CAS  Google Scholar 

  • Baines AJ (2010b) The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244:99–131

    Article  CAS  PubMed  Google Scholar 

  • Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279:20257–20266

    Article  CAS  PubMed  Google Scholar 

  • Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A, North BJ, Michan S, Baloh RH, Golden JP, Schmidt RE, Sinclair DA, Auwerx J, Milbrandt J (2011) Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A 108:952–961

    Article  Google Scholar 

  • Bohl J, Brimer N, Lyons C, Vande Pol SB (2007) The stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J Biol Chem 282:9392–9400

    Article  CAS  PubMed  Google Scholar 

  • Bolino A, Bolis A, Previtali SC, Dina G, Bussini S, Dati G, Amadio S, Del Carro U, Mruk DD, Feltri ML, Cheng CY, Quattrini A, Wrabetz L (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167:711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A, Chishti AH, Hanada T, Quattrini A, Previtali SC, Biffi A, Bolino A (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29:8858–8870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butz S, Okamoto M, Sudhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94:773–782

    Article  CAS  PubMed  Google Scholar 

  • Chang BJ, Cho IJ, Brophy PJ (2000) A study on the immunocytochemical localization of neurofascin in rat sciatic nerve. J Veterin Sci 1:67–71

    Article  CAS  Google Scholar 

  • Chang KJ, Zollinger DR, Susuki K, Sherman DL, Makara MA, Brophy PJ, Cooper EC, Bennett V, Mohler PJ, Rasband MN (2014) Glial ankyrins facilitate paranodal axoglial junction assembly. Nature Neurosci 17:1673–1681

    Article  CAS  PubMed  Google Scholar 

  • Cotter L, Ozcelik M, Jacob C, Pereira JA, Locher V, Baumann R, Relvas JB, Suter U, Tricaud N (2010) Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415–1418

    Article  CAS  PubMed  Google Scholar 

  • Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27:167–178

    Article  PubMed  CAS  Google Scholar 

  • de Mendoza A, Suga H, Ruiz-Trillo I (2010) Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 10:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domenech-Estevez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36:4506–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 1804:433–439

    Article  CAS  PubMed  Google Scholar 

  • Duffy HS, Iacobas I, Hotchkiss K, Hirst-Jensen BJ, Bosco A, Dandachi N, Dermietzel R, Sorgen PL, Spray DC (2007) The gap junction protein connexin32 interacts with the Src homology 3/hook domain of discs large homolog 1. J Biol Chem 282:9789–9796

    Article  CAS  PubMed  Google Scholar 

  • Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL Jr, Colman DR (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129:189–202

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Long JF, Fan JS, Suetake T, Zhang M (2004) The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nature Struct Mol Biol 11:475–480

    Article  CAS  Google Scholar 

  • Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285:14071–14077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 106:3567–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funke L, Dakoji S, Bredt DS (2005) Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245

    Article  CAS  PubMed  Google Scholar 

  • Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W, Liu X, Lappe-Siefke C, Rossner MJ, Groszer M, Suter U, Frahm J, Boretius S, Nave KA (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30:8953–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, Ruhwedel T, Groszer M, Sereda MW, Nave KA (2012) Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy. EMBO Mol Med 4:486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golan N, Kartvelishvily E, Spiegel I, Salomon D, Sabanay H, Rechav K, Vainshtein A, Frechter S, Maik-Rachline G, Eshed-Eisenbach Y, Momoi T, Peles E (2013) Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J Neurosci 33:10950–10961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Moon C, Niehaus K, Zheng Y, Ratner N (2012) Rac1 controls Schwann cell myelination through cAMP and NF2/merlin. J Neurosci 32:17251–17261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Whan L, Zhang Y, Wu J, Arpag S, Hu B, Imhof BA, Tian X, Carter BD, Suter U, Li J (2014) Abnormal junctions and permeability of myelin in PMP22-deficient nerves. Ann Neurol 75:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi A, Nakashima K, Yamagishi K, Hoshi T, Suzuki A, Baba H (2007) Localization of annexin II in the paranodal regions and Schmidt-Lanterman incisures in the peripheral nervous system. Glia 55:1044–1052

    Article  PubMed  Google Scholar 

  • Heffernan C, Jain MR, Liu T, Kim H, Barretto K, Li H, Maurel P (2017) Nectin-like 4 complexes with choline transporter-like protein-1 and regulates Schwann cell choline homeostasis and lipid biogenesis in vitro. J Biol Chem 292:4484–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, Morahan G, Chandler D, Kalaydjieva L, Giancotti F, King RH, Fejes-Toth AN, Fejes-Toth G, Feltri ML, Lang F, Salzer JL (2014) Functionally distinct PI3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 204:1219–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Arpag S, Zhang X, Mobius W, Werner H, Sosinsky G, Ellisman M, Zhang Y, Hamilton A, Chernoff J, Li J (2016) Tuning PAK activity to rescue abnormal myelin permeability in HNPP. PLoS Genet 12:e1006290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N, Mobius W, Rosenbluth J, Brose N, Peles E (2012) The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J Cell Biol 196:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo K, Derin R, Li M, Bredt DS (1999) Characterization of MALS/Velis-1, −2, and −3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 19:4189–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, Cai W, Lee HK, Pellegatta M, Shin YK, Jang SY, Suh DJ, Wrabetz L, Feltri ML, Park HT (2011) Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration. J Neurosci 31:2009–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamberov E, Makarova O, Roh M, Liu A, Karnak D, Straight S, Margolis B (2000) Molecular cloning and characterization of Pals, proteins associated with mLin-7. J Biol Chem 275:11425–11431

    Article  CAS  PubMed  Google Scholar 

  • Kamijo A, Saitoh Y, Ohno N, Ohno S, Terada N (2014) Immunohistochemical study of mouse sciatic nerves under various stretching conditions with "in vivo cryotechnique". J Neurosci Method 227:181–188

    Article  Google Scholar 

  • Kikuchi S, Ninomiya T, Tatsumi H, Sawada N, Kojima T (2010) Tricellulin is expressed in autotypic tight junctions of peripheral myelinating Schwann cells. J Histochem Cytochem 58:1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonoudakis D, Conti LR, Anderson S, Radeke CM, McGuire LM, Adams ME, Froehner SC, Yates JR 3rd, Vandenberg CA (2004) Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem 279:22331–22346

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Lee S, Wu D, Yeh J, Ellamushi H, Wheeler AP, Warnes G, Zhang Y, Bo X (2013) P2X7 purinoceptors contribute to the death of Schwann cells transplanted into the spinal cord. Cell Death Dis 4:e829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto A, Mizuno M, Hamada N, Nozaki Y, Jimbo EF, Momoi MY, Nagata K, Yamagata T (2014) LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome. PLoS One 9:e92695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703

    Article  CAS  PubMed  Google Scholar 

  • Mindos T, Dun XP, North K, Doddrell RD, Schulz A, Edwards P, Russell J, Gray B, Roberts SL, Shivane A, Mortimer G, Pirie M, Zhang N, Pan D, Morrison H, Parkinson DB (2017) Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol 216:495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norrmen C, Suter U (2013) Akt/mTOR signalling in myelination. Biochem Soc Transaction 41:944–950

    Article  CAS  Google Scholar 

  • Norrmen C, Figlia G, Lebrun-Julien F, Pereira JA, Trotzmuller M, Kofeler HC, Rantanen V, Wessig C, van Deijk AL, Smit AB, Verheijen MH, Ruegg MA, Hall MN, Suter U (2014) mTORC1 controls PNS myelination along the mTORC1-RXRgamma-SREBP-lipid biosynthesis axis in Schwann cells. Cell Rep 9:646–660

    Article  CAS  PubMed  Google Scholar 

  • Noseda R, Belin S, Piguet F, Vaccari I, Scarlino S, Brambilla P, Martinelli Boneschi F, Feltri ML, Wrabetz L, Quattrini A, Feinstein E, Huganir RL, Bolino A (2013) DDIT4/REDD1/RTP801 is a novel negative regulator of Schwann cell myelination. J Neurosci 33:15295–15305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunomura W, Takakuwa Y, Parra M, Conboy J, Mohandas N (2000) Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. J Biol Chem 275:24540–24546

    Article  CAS  PubMed  Google Scholar 

  • Ogita H, Takai Y (2006) Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 58:334–343

    Article  CAS  PubMed  Google Scholar 

  • Ohno N, Terada N, Yamakawa H, Komada M, Ohara O, Trapp BD, Ohno S (2006) Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J Neurosci Res 84:568–577

    Article  CAS  PubMed  Google Scholar 

  • Ohno S, Saitoh Y, Ohno N, Terada N (2017) Renaissance of morphological studies: the examination of functional structures in living animal organs using the in vivo cryotechnique. Anat Sci Int 92:55–78

    Article  PubMed  Google Scholar 

  • Olsen O, Moore KA, Fukata M, Kazuta T, Trinidad JC, Kauer FW, Streuli M, Misawa H, Burlingame AL, Nicoll RA, Bredt DS (2005) Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. J Cell Biol 170:1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen O, Funke L, Long JF, Fukata M, Kazuta T, Trinidad JC, Moore KA, Misawa H, Welling PA, Burlingame AL, Zhang M, Bredt DS (2007) Renal defects associated with improper polarization of the CRB and DLG polarity complexes in MALS-3 knockout mice. J Cell Biol 179:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcelik M, Cotter L, Jacob C, Pereira JA, Relvas JB, Suter U, Tricaud N (2010) Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J Neurosci 30:4120–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra M, Gascard P, Walensky LD, Snyder SH, Mohandas N, Conboy JG (1998) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 49:298–306

    Article  CAS  PubMed  Google Scholar 

  • Perego C, Vanoni C, Massari S, Longhi R, Pietrini G (2000) Mammalian LIN-7 PDZ proteins associate with beta-catenin at the cell-cell junctions of epithelia and neurons. EMBO J 19:3978–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin-Tricaud C, Rutishauser U, Tricaud N (2007) P120 catenin is required for thickening of Schwann cell myelin. Mol Cell Neurosci 35:120–129

    Article  CAS  PubMed  Google Scholar 

  • Peters LL, Weier HU, Walensky LD, Snyder SH, Parra M, Mohandas N, Conboy JG (1998) Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human. Genomics 54:348–350

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E (2002) Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 159:361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangwala R, Banine F, Borg JP, Sherman LS (2005) Erbin regulates mitogen-activated protein (MAP) kinase activation and MAP kinase-dependent interactions between Merlin and adherens junction protein complexes in Schwann cells. J Biol Chem 280:11790–11797

    Article  CAS  PubMed  Google Scholar 

  • Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI (2016) KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115:1836–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh Y, Ohno N, Yamauchi J, Sakamoto T, Terada N (2017) Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system. Histochem Cell Biol 148:597–606

    Article  CAS  PubMed  Google Scholar 

  • Sanuki R, Watanabe S, Sugita Y, Irie S, Kozuka T, Shimada M, Ueno S, Usukura J, Furukawa T (2015) Protein-4.1G-mediated membrane trafficking is essential for correct rod synaptic location in the retina and for normal visual function. Cell Rep 10:796–808

    Article  CAS  PubMed  Google Scholar 

  • Scheiermann C, Meda P, Aurrand-Lions M, Madani R, Yiangou Y, Coffey P, Salt TE, Ducrest-Gay D, Caille D, Howell O, Reynolds R, Lobrinus A, Adams RH, Yu AS, Anand P, Imhof BA, Nourshargh S (2007) Expression and function of junctional adhesion molecule-C in myelinated peripheral nerves. Science 318:1472–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer SS, Xu YT, Nelles E, Fischbeck K, Willecke K, Bone LJ (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24:8–20

    Article  CAS  PubMed  Google Scholar 

  • Segura-Anaya E, Martinez-Gomez A, Dent MA (2015) Localization of aquaporin 1 water channel in the Schmidt-Lanterman incisures and the paranodal regions of the rat sciatic nerve. Neurosci 285:119–127

    Article  CAS  Google Scholar 

  • Seo PS, Quinn BJ, Khan AA, Zeng L, Takoudis CG, Hanada T, Bolis A, Bolino A, Chishti AH (2009) Identification of erythrocyte p55/MPP1 as a binding partner of NF2 tumor suppressor protein/Merlin. Exp Biol Med 234:255–262

    Article  CAS  Google Scholar 

  • Shelly M, Mosesson Y, Citri A, Lavi S, Zwang Y, Melamed-Book N, Aroeti B, Yarden Y (2003) Polar expression of ErbB-2/HER2 in epithelia. Bimodal regulation by Lin-7. Dev Cell 5:475–486

    Article  CAS  PubMed  Google Scholar 

  • Sherman DL, Krols M, Wu LM, Grove M, Nave KA, Gangloff YG, Brophy PJ (2012) Arrest of myelination and reduced axon growth when Schwann cells lack mTOR. J Neurosci 32:1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel I, Adamsky K, Eshed Y, Milo R, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN, Peles E (2007) A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nature Neurosci 10:861–869

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan K, Roosa J, Olsen O, Lee SH, Bredt DS, McConnell SK (2008) MALS-3 regulates polarity and early neurogenesis in the developing cerebral cortex. Development 135:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Stohr H, Molday LL, Molday RS, Weber BH, Biedermann B, Reichenbach A, Kramer F (2005) Membrane-associated guanylate kinase proteins MPP4 and MPP5 associate with Veli3 at distinct intercellular junctions of the neurosensory retina. J Comp Neurol 481:31–41

    Article  PubMed  Google Scholar 

  • Straight SW, Pieczynski JN, Whiteman EL, Liu CJ, Margolis B (2006) Mammalian lin-7 stabilizes polarity protein complexes. J Biol Chem 281:37738–37747

    Article  CAS  PubMed  Google Scholar 

  • Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS, Rasband MN (2011) Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci U S A 108:8009–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susuki K, Otani Y, Rasband MN (2016) Submembranous cytoskeletons stabilize nodes of Ranvier. Exp Neurol 283:446–451

    Article  PubMed  Google Scholar 

  • Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X (2006) Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26:1991–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Dai P, Liu Y, Marchetto S, Xiong WC, Borg JP, Mei L (2009) Erbin regulates NRG1 signaling and myelination. Proc Natl Acad Sci U S A 106:9477–9482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • te Velthuis AJ, Admiraal JF, Bagowski CP (2007) Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol 7:129

    Article  CAS  Google Scholar 

  • Terada N, Saitoh Y, Ohno N, Komada M, Saitoh S, Peles E, Ohno S (2012) Essential function of protein 4.1G in targeting of membrane protein palmitoylated 6 into Schmidt-Lanterman incisures in myelinated nerves. Mol Cell Biol 32:199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada N, Saitoh Y, Ohno N, Komada M, Yamauchi J, Ohno S (2013) Involvement of Src in the membrane skeletal complex, MPP6-4.1G, in Schmidt-Lanterman incisures of mouse myelinated nerve fibers in PNS. Histochem Cell Biol 140:213–222

    Article  CAS  PubMed  Google Scholar 

  • Terada N, Saitoh Y, Kamijo A, Ohno S, Ohno N (2016) Involvement of membrane skeletal molecules in the Schmidt-Lanterman incisure in Schwann cells. Med Mol Morphol 49:5–10

    Article  CAS  PubMed  Google Scholar 

  • Torii T, Miyamoto Y, Onami N, Tsumura H, Nemoto N, Kawahara K, Kato M, Kotera J, Nakamura K, Tanoue A, Yamauchi J (2013) In vivo expression of the Arf6 Guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves. J Mol Neurosci 51:522–531

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Andrews SB, Wong A, O'Connell M, Griffin JW (1989) Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol 18:47–60

    Article  CAS  PubMed  Google Scholar 

  • Tricaud N, Perrin-Tricaud C, Bruses JL, Rutishauser U (2005) Adherens junctions in myelinating Schwann cells stabilize Schmidt-Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 25:3259–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Pomeren M, Selles RW, van Ginneken BT, Schreuders TA, Janssen WG, Stam HJ (2009) The hypothesis of overwork weakness in Charcot-Marie-Tooth: a critical evaluation. J Rehabilitation Med 41:32–34

    Article  Google Scholar 

  • Verhey KJ, Rapoport TA (2001) Kinesin carries the signal. Trend Biochem Sci 26:545–550

    Article  CAS  PubMed  Google Scholar 

  • Vinci P, Perelli SL, Gargiulo P (2009) About the hypothesis of overwork weakness in Charcot-Marie-Tooth disease. J Rehabilitation Med 41:778

    Article  Google Scholar 

  • Walensky LD, Gascard P, Fields ME, Blackshaw S, Conboy JG, Mohandas N, Snyder SH (1998) The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J Cell Biol 141:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Mandai K, Okabe N, Hoshino T, Nakanishi H, Takai Y (2002) Localization of mLin-7 at nectin-based cell-cell junctions. Oncogene 21:2545–2554

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Fort A, Spray DC (1999) Characteristics of gap junction channels in Schwann cells from wild-type and connexin-null mice. Ann N Y Acad Sci 883:533–537

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Messing A, Chiu SY (1999) Determinants of excitability at transition zones in Kv1.1-deficient myelinated nerves. J Neurosci 19:5768–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zollinger DR, Chang KJ, Baalman K, Kim S, Rasband MN (2015) The polarity protein Pals1 regulates radial sorting of axons. J Neurosci 35:10474–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a grant from the Japanese Society for the Promotion of Science (KAKEN number 16K08463) to N. Terada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Terada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terada, N., Saitoh, Y., Kamijo, A., Yamauchi, J., Ohno, N., Sakamoto, T. (2019). Structures and Molecular Composition of Schmidt–Lanterman Incisures. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_12

Download citation

Publish with us

Policies and ethics