Skip to main content

Novel Agroactive Secondary Metabolites from Actinomycetes in the Past Two Decades with Focus on Screening Strategies and Discovery

  • Chapter
  • First Online:
Natural Products from Actinomycetes

Abstract

Actinomycetes produce plenty of bioactive secondary metabolites. Since the golden age of antibiotics, actinomycetes have been the kernel of discovery of pharmaceutical and agrochemical entities. Many important pesticides originated directly from secondary metabolites of actinomycetes or based on the lead compounds from actinomycetes have been developed and shared rather high portion of the pesticide market. The discovery of new leads for the developments of new agrochemicals, especially eco-friendly agrochemicals, becomes more and more difficult now; however, the structure diversity and extensive activity of secondary metabolites from actinomycetes attract great interest of the researchers and multi-national agrochemical companies. In this review, we summarized the techniques applied in the discovery of agroactive secondary metabolites from actinomycetes, with focus on the screening strategies applied and some promising agroactive secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65(8):385–395. https://doi.org/10.1038/ja.2012.27

    Article  CAS  Google Scholar 

  • Betancur LA, Forero AM, Romero-Otero A, Sepulveda LY, Moreno-Sarmiento NC, Castellanos L, Ramos FA (2019) Cyclic tetrapeptides from the marine strain Streptomyces sp. PNM-161a with activity against rice and yam phytopathogens. J Antibiot (Tokyo) 72(10):744–751. https://doi.org/10.1038/s41429-019-0201-0

    Article  CAS  Google Scholar 

  • Betancur LA, Forero AM, Vinchira-Villarraga DM, Cardenas JD, Romero-Otero A, Chagas FO, Pupo MT, Castellanos L, Ramos FA (2020) NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiol Res 239:126507. https://doi.org/10.1016/j.micres.2020.126507

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Yu Z (2016) Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J Agric Food Chem 64(45):8525–8529. https://doi.org/10.1021/acs.jafc.6b03645

    Article  CAS  PubMed  Google Scholar 

  • Bo AB, Kim JD, Kim YS, Sin HT, Kim HJ, Khaitov B, Ko YK, Park KW, Choi JS (2019) Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide. PLoS One 14(9):e0222933. https://doi.org/10.1371/journal.pone.0222933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Liu W, Chang Y, Chen H, Zhang Y, Xu W, Tao L (2019) 5′-Epi-SPA-6952A, a new insecticidal 24-membered macrolide produced by Streptomyces diastatochromogenes SSPRC-11339. Nat Prod Res 33(5):659–664. https://doi.org/10.1080/14786419.2017.1405401

    Article  CAS  PubMed  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen J, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M, Robison R, Porter H, Jensen J (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255(2):296–300. https://doi.org/10.1111/j.1574-6968.2005.00080.x

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Lin B, Lin Y, Xie F, Lu W, Fong W-F (2005) A new fungicide produced by a Streptomyces sp. gaas7310. J Antibiot 58(8):519–522

    Article  CAS  Google Scholar 

  • Chen X, Hu LF, Huang XS, Zhao LX, Miao CP, Chen YW, Xu L-H, Han L, Li YQ (2019) Isolation and characterization of new phenazine metabolites with antifungal activity against root-rot pathogens of Panax notoginseng from Streptomyces. J Agric Food Chem 67(41):11403–11407. https://doi.org/10.1021/acs.jafc.9b04191

    Article  CAS  PubMed  Google Scholar 

  • CortevaAgrisciences LLC (2020) Corteva Agriscience Launches Inatreqâ„¢ Active in Cereals in Europe. https://www.corteva.com/resources/media-center/corteva-launches-inatreq-active-in-cereals-in-europe.html. Accessed 03-20-2020

  • Crevelin EJ, Canova SP, Melo IS, Zucchi TD, da Silva RE, Moraes LA (2013) Isolation and characterization of phytotoxic compounds produced by Streptomyces sp. AMC 23 from red mangrove (Rhizophora mangle). Appl Biochem Biotechnol 171(7):1602–1616. https://doi.org/10.1007/s12010-013-0418-5

    Article  CAS  PubMed  Google Scholar 

  • Deng JJ, Lu CH, Li YY, Li SR, Shen YM (2014) Cuevaenes C-E: three new triene carboxylic derivatives from Streptomyces sp. LZ35DeltagdmAI. Beilstein J Org Chem 10:858–862. https://doi.org/10.3762/bjoc.10.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieter A, Hamm A, Fiedler HP, Goodfellow M, Mueller WEG, Brun R, Bei W, Bringmann G (2003) Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced by a novel alkaliphilic Streptomyces strain. J Antibiot 56(7):639–646

    Article  CAS  Google Scholar 

  • Evans BS, Zhao C, Gao J, Evans CM, Ju KS, Doroghazi JR, van der Donk WA, Kelleher NL, Metcalf WW (2013) Discovery of the antibiotic phosacetamycin via a new mass spectrometry-based method for phosphonic acid detection. ACS Chem Biol 8(5):908–913. https://doi.org/10.1021/cb400102t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology (Reading) 150(Pt 4):785–793. https://doi.org/10.1099/mic.0.26645-0

    Article  CAS  Google Scholar 

  • Fang K, Schlingmann G, Enos A, Carter GT (2001) New biotransformation products of nemadectins. J Antibiot 54(10):805–809

    Article  CAS  Google Scholar 

  • Feng C, Ling H, Du D, Zhang J, Niu G, Tan H (2014) Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes. Microb Cell Fact 13(59). http://www.microbialcellfactories.com/content/13/1/59

  • Feng Y, Yu Z, Zhang S, Xue Z, Huang J, Zhang H, Wan X, Chen A, Wang J (2019) Isolation and characterization of new 16-membered macrolides from the aveA3 gene replacement mutant strain Streptomyces avermitilis TM24 with acaricidal and nematicidal activities. J Agric Food Chem 67(17):4782–4792. https://doi.org/10.1021/acs.jafc.9b00079

    Article  CAS  PubMed  Google Scholar 

  • Galm U, Sparks TC (2016) Natural product derived insecticides: discovery and development of spinetoram. J Ind Microbiol Biotechnol 43:185–193

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt K, Schimana J, Krastel P, Dettner K, Rheinheimer J, Zeeck A, Fiedler H-P (2002) Endophenazines A-D, new phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55(9):534–541

    Article  Google Scholar 

  • Hahn DR, Gustafson G, Waldron C, Bullard B, Jackson JD, Mitchell J (2006) Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. J Ind Microbiol Biotechnol 33:94–104. https://doi.org/10.1007/s10295-005-0016-9

    Article  CAS  PubMed  Google Scholar 

  • Hanafi M, Shibata K, Ueki M, Taniguchi M (1996) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02. II. Structural elucidation. J Antibiot 49:1226–1231

    Article  CAS  Google Scholar 

  • Hashimoto M, Murakami T, Funahashi K, Tokunaga T, Nihei K, Okuno T, Kimura T, Naoki H, Himeno H (2006) An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorg Med Chem 14(24):8259–8270. https://doi.org/10.1016/j.bmc.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JEM, Goodfellow M, Beil W, Kraemer M, Imhoft JF, Suessmuth RD, Fiedler H-P (2009) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62(2):99–104

    Article  CAS  Google Scholar 

  • Hou L, Liu Z, Yu D, Li H, Ju J, Li W (2020) Targeted isolation of new polycyclic tetramate macrolactams from the deep sea-derived Streptomyces somaliensis SCSIO ZH66. Bioorg Chem 101:103954. https://doi.org/10.1016/j.bioorg.2020.103954

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Chen X, Han L, Zhao L, Miao C, Huang X, Chen Y, Li P, Li Y (2019) Two new phenazine metabolites with antimicrobial activities from soil-derived Streptomyces species. J Antibiot (Tokyo) 72(7):574–577. https://doi.org/10.1038/s41429-019-0163-2

    Article  CAS  Google Scholar 

  • Huang J, Chen AL, Zhang H, Yu Z, Li MH, Li N, Lin J-T, Bai H, Wang J-D, Zheng YG (2015) Gene replacement for the generation of designed novel avermectin derivatives with enhanced acaricidal and nematicidal activities. Appl Environ Microbiol 81(16):5326–5334. https://doi.org/10.1128/AEM.01025-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intra B, Bechthold A, Euanorasetr J, Paululat T, Panbangred W (2016) Thailandins A and B, new polyene macrolactone compounds isolated from Actinokineospora bangkokensis strain 44EHWT, possessing antifungal activity against anthracnose fungi and pathogenic yeasts. J Agric Food Chem 64(25):5171–5179. https://doi.org/10.1021/acs.jafc.6b01119

    Article  CAS  PubMed  Google Scholar 

  • Ju KS, Gao J, Doroghazi JR, Wang KK, Thibodeaux CJ, Li S, Metzger E, Fudala J, Su J, Zhang JK, Lee J, Cioni JP, Evans BS, Hirota R, Labeda DP, van der Donk W, Metcalf WW (2015) Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci U S A 112(39):12175–12180. https://doi.org/10.1073/pnas.1500873112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaaniche F, Hamed A, Elleuch L, Chakchouk-Mtibaa A, Smaoui S, Karray-Rebai I, Koubaa I, Arcile G, Allouche N, Mellouli L (2020) Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation. Microb Pathog 142:104106. https://doi.org/10.1016/j.micpath.2020.104106

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Cho WJ, Song MC, Park SW, Kim K, Kim E, Lee N, Nam S-J, Oh K-H, Yoon YJ (2017) Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis. Microb Cell Fact 16(1):9. https://doi.org/10.1186/s12934-017-0626-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JD, Park MY, Jeon BJ, Kim BS (2019) Disease control efficacy of 32,33-didehydroroflamycoin produced by Streptomyces rectiviolaceus strain DY46 against gray mold of tomato fruit. Sci Rep 9(1):13533. https://doi.org/10.1038/s41598-019-49779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizuka M, Enokita R, Shibata K, Okamoto Y, Inoue Y, Okazaki T (2002) Studies on Actinomycetes isolated from plant leaves—new plant growth inhibitors A-79197-2 and -3 from Dactylosporangium aurantiacum SANK 61299. Actinomycetologica 16:14–16

    Article  CAS  Google Scholar 

  • Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, Edwards PMR, Graupner PR (2009) Discovery of the butenyl-spinosyn insecticides: novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorg Med Chem 17(12):4185–4196. https://doi.org/10.1016/j.bmc.2009.02.035

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li L, Tian Y, Niu G, Tan H (2011) Hybrid antibiotics with the nikkomycin nucleoside and polyoxin peptidyl moieties. Metab Eng 13(3):336–344. https://doi.org/10.1016/j.ymben.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li L, Feng C, Chen Y, Tan H (2012) Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microb Cell Fact 11:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JS, Wang JD, Yang LY, Zhang J, Zhang H, Wang XJ, Xiang WS (2014) New doramectin analogs from mutant Streptomyces avermitilis NEAU1069-3. J Antibiot (Tokyo) 67(2):187–189. https://doi.org/10.1038/ja.2013.97

    Article  CAS  Google Scholar 

  • Li LJ, Zhou D, Chen AL, Huang J, Zhang H, Wang JD, Xiang WS (2015) Two new alpha-class milbemycin metabolites from mutant Streptomyces avermitilis NEAU1069-3. J Antibiot (Tokyo) 68(5):354–356. https://doi.org/10.1038/ja.2014.159

    Article  CAS  Google Scholar 

  • Li JS, Du MN, Zhang H, Zhang J, Zhang SY, Wang HY, Chen AL, Wang JD, Xiang WS (2017a) New milbemycin metabolites from the genetically engineered strain Streptomyces bingchenggensis BCJ60. Nat Prod Res 31(7):780–784. https://doi.org/10.1080/14786419.2016.1244194

    Article  CAS  PubMed  Google Scholar 

  • Li JS, Zhang H, Zhang SY, Wang HY, Zhang J, Chen AL, Wang JD, Xiang WS (2017b) New macrocyclic lactones with acaricidal and nematocidal activities from a genetically engineered strain Streptomyces bingchenggensis BCJ60. J Asian Nat Prod Res 19(4):339–346. https://doi.org/10.1080/10286020.2016.1211641

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu Z, Sun C, Shao M, Ma J, Wei X, Zhang T, Li W, Ju J (2019) Discovery and biosynthesis of atrovimycin, an antitubercular and antifungal cyclodepsipeptide featuring vicinal-dihydroxylated cinnamic acyl chain. Org Lett 21(8):2634–2638. https://doi.org/10.1021/acs.orglett.9b00618

    Article  CAS  PubMed  Google Scholar 

  • Machida K, Takimoto H, Miyoshi H, Taniguchi M (1999) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02. V. Inhibition mechanism of bovine heart mitochondrial cytochrome bc1 by the novel antibiotic UK-2A. J Antibiot 52:748–753

    Article  CAS  Google Scholar 

  • Mangamuri U, Muvva V, Poda S, Naragani K, Munaganti RK, Chitturi B, Yenamandra V (2016a) Bioactive metabolites produced by Streptomyces cheonanensis VUK-A from Coringa mangrove sediments: isolation, structure elucidation and bioactivity. 3 Biotech 6(1):63. https://doi.org/10.1007/s13205-016-0398-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangamuri UK, Vijayalakshmi M, Poda S, Manavathi B, Chitturi B, Yenamandra V (2016b) Isolation and biological evaluation of N-(4-aminocyclooctyl)-3,5-dinitrobenzamide, a new semisynthetic derivative from the Mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3 Biotech 6(2):158. https://doi.org/10.1007/s13205-016-0472-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez AFC, Mello FMP, Zucchi TD, Melo IS, Moraes LAB (2020) Tandem mass spectrometry methods to accelerate the identification of phytotoxic metabolites produced by Streptomyces sp. 39 PL. Nat Prod Res 34(2):210–216. https://doi.org/10.1080/14786419.2018.1525713

    Article  CAS  PubMed  Google Scholar 

  • Meyer KG, Rogers RB, Yao C, Niyaz NM, Adamski Butz JL, Nader BS (2005) Derivatives of UK-2A. US Patent 6861390, 1 Mar 2005

    Google Scholar 

  • Milisavljevic M, Zivkovic S, Pekmezovic M, Stankovic N, Vojnovic S, Vasiljevic B, Senerovic L (2015) Control of human and plant fungal pathogens using pentaene macrolide 32,33-didehydroroflamycoin. J Appl Microbiol 118(6):1426–1434. https://doi.org/10.1111/jam.12811

    Article  CAS  PubMed  Google Scholar 

  • Nain-Perez A, Barbosa LCA, Maltha CRA, Forlani G (2016) First total synthesis and phytotoxic activity of Streptomyces sp. metabolites abenquines. Tetrahedron Lett 57(16):1811–1814. https://doi.org/10.1016/j.tetlet.2016.03.038

    Article  CAS  Google Scholar 

  • Nain-Perez A, Barbosa LCA, Maltha CRA, Forlani G (2017) Natural abenquines and their synthetic analogues exert algicidal activity against bloom-forming cyanobacteria. J Nat Prod 80(4):813–818. https://doi.org/10.1021/acs.jnatprod.6b00629

    Article  CAS  PubMed  Google Scholar 

  • Owen WJ, Yao C, Myung K, Kemmitt G, Leader A, Meyer KG, Bowling A, Slanec T, Kramer VJ (2017) Biological characterization of fenpicoxamid, a new fungicide with utility in cereals and other crops. Pest Manag Sci 73:2005–2016. https://doi.org/10.1002/ps.4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen WJ, Meyer KG, Slanec TJ, Wang NX, Meyer ST, Niyaz NM, Rogers RB, Bravo-Altamirano K, Herrick JL, Yao C (2018) Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. I. Impact of picolinamide ring replacement. Pest Manag Sci 75:413–426. https://doi.org/10.1002/ps.5130

    Article  CAS  PubMed  Google Scholar 

  • Owen WJ, Meyer KG, Meyer ST, Li F, Slanec TJ, Wang NX, Yao C (2019a) Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. II. Impact of modifications to the macrocycle benzyl position. Pest Manag Sci 75:1831–1840. https://doi.org/10.1002/ps.5329

    Article  CAS  PubMed  Google Scholar 

  • Owen WJ, Meyer KG, Slanec TJ, Meyer ST, Wang NX, Fitzpatrick GM, Niyaz NN, Nugent J, Ricks MJ, Rogers RB, Yao C (2019b) Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. III. Impact of modifications to the macrocycle isobutyryl ester position. Pest Manag Sci 76:277–286. https://doi.org/10.1002/ps.5511

    Article  CAS  PubMed  Google Scholar 

  • Pan HQ, Yu SY, Song CF, Wang N, Hua HM, Hu JC, Wang SJ (2015) Identification and characterization of the antifungal substances of a novel Streptomyces cavourensis NA4. J Microbiol Biotechnol 25(3):353–357. https://doi.org/10.4014/jmb.1407.07025

    Article  CAS  PubMed  Google Scholar 

  • Pan J-J, Wan X, Zhang H, Chen Z, Huang J, Yang B, Chen A, Wang J-D (2016a) Three new milbemycins from a genetically engineered strain Streptomyces avermitilis MHJ1011. J Antibiot (Tokyo) 69(2):104–107. https://doi.org/10.1038/ja.2015.90

    Article  CAS  Google Scholar 

  • Pan JJ, Wan X, Zhang SY, Huang J, Zhang H, Chen AL, Wang J-D (2016b) Three new 16-membered macrolide compounds from a genetically engineered strain Streptomyces avermitilis MHJ1011. Bioorg Med Chem Lett 26(14):3376–3379. https://doi.org/10.1016/j.bmcl.2016.04.033

    Article  CAS  PubMed  Google Scholar 

  • Priyadharsini P, Dhanasekaran D, Kanimozhi B (2013a) Isolation and Structural Characterization of N-(naphthalene-1-yl)propanamide, a herbicidal compound from Streptomyces sp. KA1-3. In: Velu RK (ed) Microbiological research in agroecosystem management. Springer, New Delhi, pp 187–195

    Chapter  Google Scholar 

  • Priyadharsini P, Dhanasekaran D, Kanimozhi B (2013b) Isolation, structural identification and herbicidal activity of N-phenylpropanamide from Streptomyces sp. KA1-3. Arch Phytopathol Plant Prot 46(3):364–373. https://doi.org/10.1080/03235408.2012.758418

    Article  CAS  Google Scholar 

  • Priyadharsini P, Dhanasekaran D, Gopinath PM, Ramanathan K, Shanthi V, Chandraleka S, Biswas B (2017) Spectroscopic identification and molecular modeling of diethyl 7-hydroxytrideca-2,5,8,11-tetraenedioate: a herbicidal compound from Streptomyces sp. Arab J Sci Eng 42(6):2217–2227. https://doi.org/10.1007/s13369-016-2401-2

    Article  CAS  Google Scholar 

  • Qi J, Liu J, Wan D, Cai YS, Wang Y, Li S, Wu P, Feng X, Qiu G, Yang S, Chen W, Deng Z (2015) Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics. Biotechnol Bioeng 112(9):1865–1871. https://doi.org/10.1002/bit.25594

    Article  CAS  PubMed  Google Scholar 

  • Saadouli I, Zendah El Euch I, Trabelsi E, Mosbah A, Redissi A, Ferjani R, Fhoula I, Cherif A, Sabatier J-M, Sewald N, Ouzari HI (2020) Isolation, characterization and chemical synthesis of large spectrum antimicrobial cyclic dipeptide (l-leu-l-pro) from Streptomyces misionensis V16R3Y1 bacteria extracts. A novel 1H NMR metabolomic approach. Antibiotics (Basel) 9(5):270. https://doi.org/10.3390/antibiotics9050270

    Article  CAS  Google Scholar 

  • Schmitzer PR, Graupner PR, Chapin EL, Fields SC, Gilbert JR, Gray JA, Peacock CL, Gerwick BC (2000) Ribofuranosyl triazolone: a natural product herbicide with activity on adenylosuccinate synthetase following phosphorylation. J Nat Prod 63(6):777–781. https://doi.org/10.1021/np990590i

    Article  CAS  PubMed  Google Scholar 

  • Schulz D, Beese P, Ohlendorf B, Erhard A, Zinecker H, Dorador C, Imhoff JF (2011) Abenquines A-D: aminoquinone derivatives produced by Streptomyces sp. strain DB634. J Antibiot (Tokyo) 64(12):763–768. https://doi.org/10.1038/ja.2011.87

    Article  CAS  Google Scholar 

  • Shi G, Zhang X, Wu L, Xie J, Tao K, Hou T (2011) Mutational biosynthesis of neomycin analogs by a mutant of neomycin-producing Streptomyces fradiae. Folia Microbiol (Praha) 56(6):555–561. https://doi.org/10.1007/s12223-011-0082-5

    Article  CAS  Google Scholar 

  • Shi Y, Gu R, Li Y, Wang X, Ren W, Li X, Wang L, Xie Y, Hong B (2019) Exploring novel herbicidin analogues by transcriptional regulator overexpression and MS/MS molecular networking. Microb Cell Fact 18(1):175. https://doi.org/10.1186/s12934-019-1225-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Wu Z, Zhang Y, Zhang Z, Fang W, Wang Y, Wan Z, Wang K, Ke S (2020) Herbicidal secondary metabolites from actinomycetes: structure diversity, modes of action, and their roles in the development of herbicides. J Agric Food Chem 68(1):17–32

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Hanafi M, Fujii J, Sakanaka O, Iinuma K, Ueki M, Taniguchi M (1998) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02 III. Absolute configuration of an antifungal antibiotic, UK-2A, and consideration of its conformation. J Antibiot 51:1113–1116

    Article  CAS  Google Scholar 

  • Shigematsu Y, Sugie Y, Kizuka M (2010) A-87774 compound or salt thereof, method for producing the compound or salt thereof, and agrochemical containing the compound or salt thereof as active ingredient. EU Patent No. EP2468879B1

    Google Scholar 

  • Shiomi K, Hatae K, Hatano H, Matsumoto A, Takahashi Y, Jiang C, Tomoda H, Kobayashi S, Tanaka H, Omura S (2005) A new antibiotic, antimycin A9, produced by Streptomyces sp. K01-0031. J Antibiot 58(1):74–78

    Article  CAS  Google Scholar 

  • Sholkamy EN, Ahmed MS, Yasser MM, Mostafa AA (2020) Antimicrobial quercetin 3-O-glucoside derivative isolated from Streptomyces antibioticus strain ess_amA8. J King Saud Univ Sci 32:1838–1844

    Article  Google Scholar 

  • Smaoui S, Mathieu F, Elleuch L, Coppel Y, Merlina G, Karray-Rebai I, Mellouli L (2012) Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J Microbiol Biotechnol 28(3):793–804. https://doi.org/10.1007/s11274-011-0872-6

    Article  CAS  PubMed  Google Scholar 

  • Sparks TC, Hahn DR, Garizi NV (2017) Natural products, their derivatives, mimics and synthetic equivalents: role in agrochemical discovery. Pest Manag Sci 73(4):700–715. https://doi.org/10.1002/ps.4458

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang G, Xiao H, Jiang J, Xiao D, Xing B, Li A, Zhang Y, Sun K, Xu Y, Guo L, Yang D, Ma M (2020) Strepimidazoles A-G from the plant endophytic Streptomyces sp. PKU-EA00015 with inhibitory activities against a plant pathogenic fungus. J Nat Prod 83(7):2246–2254. https://doi.org/10.1021/acs.jnatprod.0c00362

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Nakashima T (2018) Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics (Basel) 7:45. https://doi.org/10.3390/antibiotics7020045

    Article  CAS  Google Scholar 

  • Takatsu T, Horiuchi N, Ishikawa M, Wanibuchi K, Moriguchi T, Takahashi S (2003) 1100-50, a novel nematocide from Streptomyces lavendulae SANK 64297. J Antibiot 56(3):306–309

    Article  CAS  Google Scholar 

  • Ueki M, Taniguchi M (1997) The mode of action of UK-2A and UK-3A, novel antifungal antibiotics from Streptomyces sp. 517-02. J Antibiot 50:1052–1057

    Article  CAS  Google Scholar 

  • Ueki M, Abe K, Hanafi M, Shibata K, Tanaka T, Taniguchi M (1996) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517-02. I. Fermentation, isolation, and biological properties. J Antibiot 49:639–643

    Article  CAS  Google Scholar 

  • Umetsu N, Shirai Y (2020) Development of novel pesticides in the 21st century. J Pest Sci 45(2):54–74. https://doi.org/10.1584/jpestics.D20-201

    Article  CAS  Google Scholar 

  • Wan Z, Fang W, Shi L, Wang K, Zhang Y, Zhang Z, Wu Z, Yang Z, Gu Y (2015) Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821. J Antibiot (Tokyo) 68:185–190. https://doi.org/10.1038/ja.2014.123

    Article  CAS  Google Scholar 

  • Wan X, Zhang SY, Zhang H, Zhai J, Huang J, Chen AL, Wang JD (2017) New tenvermectin analogs obtained by microbial conversion with Saccharopolyspora erythraea. J Antibiot (Tokyo) 70(2):190–192. https://doi.org/10.1038/ja.2016.91

    Article  CAS  Google Scholar 

  • Wang HY, Zhang J, Zhang YJ, Zhang B, Liu CX, He HR, Wang XJ, Xiang WS (2014) Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis. Appl Microbiol Biotechnol 98(23):9703–9712. https://doi.org/10.1007/s00253-014-5970-6

    Article  CAS  PubMed  Google Scholar 

  • Wattanasuepsin W, Intra B, Euanorasetr J, Watanabe Y, Mingma R, Fukasawa W, Mori M, Maatsumoto A, Shiomi K, Panbangred W (2017) 1-Methoxypyrrole-2-carboxamide—a new pyrrole compound isolated from Streptomyces griseocarneus SWW368. J Gen Appl Microbiol 63(4):207–211. https://doi.org/10.2323/jgam.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Zhang W, Ji Z (2015) Structure and antibacterial activity of ambobactin, a new telomycin-like cyclic depsipeptide antibiotic produced by Streptomyces ambofaciens F3. Molecules 20(9):16278–16289. https://doi.org/10.3390/molecules200916278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang W-S, Wang J-D, Wang M, Wang X-J (2010) New nemadectin congener from Streptomyces microflavus neau3: fermentation, isolation, structure elucidation and biological activities. J Antibiot 63:171–175

    Article  CAS  Google Scholar 

  • Xu JH, Gu KB, Zhang DJ, Li YG, Tian L (2017) Ghanamycins A and B, two novel gamma-butyrolactones from marine-derived Streptomyces ghanaensis TXC6-16. J Antibiot (Tokyo) 70(6):733–736. https://doi.org/10.1038/ja.2017.37

    Article  CAS  Google Scholar 

  • Xu X, Han L, Zhao L, Chen X, Miao C, Hu L, Huang X, Chen Y, Li Y (2019) Echinosporin antibiotics isolated from Amycolatopsis strain and their antifungal activity against root-rot pathogens of the Panax notoginseng. Folia Microbiol (Praha) 64(2):171–175. https://doi.org/10.1007/s12223-018-0642-z

    Article  CAS  Google Scholar 

  • Yamazoe A, Hayashi K, Kuboki A, Ohira S, Nozaki H (2004) The isolation, structural determination, and total synthesis of terfestatin A, a novel auxin signaling inhibitor from Streptomyces sp. Tetrahedron Lett 45:4. https://doi.org/10.1016/j.tetlet.2004.09.055

    Article  CAS  Google Scholar 

  • Yan H, Li Y, Zhang XY, Zhou WY, Feng TJ (2017) A new cytotoxic and anti-fungal C-glycosylated benz[alpha]anthraquinone from the broth of endophytic Streptomyces blastomycetica strain F4-20. J Antibiot (Tokyo) 70(3):301–303. https://doi.org/10.1038/ja.2016.126

    Article  CAS  Google Scholar 

  • Yang LY, Wang JD, Zhang J, Xue CY, Zhang H, Wang XJ, Xiang WS (2013) New nemadectin congeners with acaricidal and nematocidal activity from Streptomyces microflavus neau3 Y-3. Bioorg Med Chem Lett 23(20):5710–5713. https://doi.org/10.1016/j.bmcl.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  • Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY (2012) Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14(2):175–184

    Article  CAS  Google Scholar 

  • Zhai L, Lin S, Qu D, Hong X, Bai L, Chen W, Deng Z (2012) Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab Eng 14(4):388–393. https://doi.org/10.1016/j.ymben.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  • Zhang BX, Zhang H, Wang XJ, Wang JD, Liu CX, Xiang WS (2011a) New milbemycins from mutant Streptomyces bingchenggensis X-4. J Antibiot (Tokyo) 64(11):753–756. https://doi.org/10.1038/ja.2011.75

    Article  CAS  Google Scholar 

  • Zhang DJ, Wei G, Wang Y, Si CC, Tian L, Tao LM, Li YG (2011b) Bafilomycin K, a new antifungal macrolide from Streptomyces flavotricini Y12-26. J Antibiot (Tokyo) 64(5):391–393. https://doi.org/10.1038/ja.2011.12

    Article  CAS  Google Scholar 

  • Zhang J, Yan YJ, An J, Huang SX, Wang XJ, Xiang WS (2015) Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase. Microb Cell Fact 14:152. https://doi.org/10.1186/s12934-015-0337-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fan Y, Gao J, Xu W, Xu Z, Liu Y, Li Z, Tao L (2019) A new 24-membered macrolide shows insecticidal activity against Pieris rapae potentially through induction of programmed cell death. Food Agric Immunol 30(1):727–742. https://doi.org/10.1080/09540105.2019.1626808

    Article  CAS  Google Scholar 

  • Zhang D, Lu Y, Chen H, Wu C, Zhang H, Chen L, Chen X (2020a) Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. J Antibiot (Tokyo) 73:265–282. https://doi.org/10.1038/s41429-020-0287-4

    Article  CAS  Google Scholar 

  • Zhang H, Feng Y, Zhang S, Huang J, Xue Z, Wang J (2020b) Two new sixteen-membered macrolides from the genetically engineered strain Streptomyces avermitilis MHJ1011. Nat Prod Res 34(20):2959–2963

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhou T, Harunari E, Oku N, Igarashi Y (2020c) Iseolides A-C, antifungal macrolides from a coral-derived actinomycete of the genus Streptomyces. J Antibiot (Tokyo) 73(8):534–541. https://doi.org/10.1038/s41429-020-0304-7

    Article  CAS  Google Scholar 

  • Zhao H, Yang A, Zhang N, Li S, Yuan T, Ding N, Zhang S, Bao S, Wang C, Zhang Y, Wang X, Hu L (2020) Insecticidal endostemonines A-J produced by endophytic Streptomyces from Stemona sessilifolia. J Agric Food Chem 68(6):1588–1595. https://doi.org/10.1021/acs.jafc.9b06755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is funded by grants of National Key R&D Program of China (2017YFD0201205) and Hubei Innovation Centre of Agricultural Science and Technology (2019-620-000-001-27).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaimei Wang or Shaoyong Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, K., Ke, S., Fang, W., Wu, Z., Zhang, Y. (2022). Novel Agroactive Secondary Metabolites from Actinomycetes in the Past Two Decades with Focus on Screening Strategies and Discovery. In: Rai, R.V., Bai, J.A. (eds) Natural Products from Actinomycetes. Springer, Singapore. https://doi.org/10.1007/978-981-16-6132-7_9

Download citation

Publish with us

Policies and ethics