Skip to main content

Five-Membered N-Heterocycle Synthesis

  • Chapter
  • First Online:
Lawesson’s Reagent in Heterocycle Synthesis
  • 476 Accesses

Abstract

The heterocyclic compound is one of the most encountered frameworks in medicinal and pharmaceutically related materials. The heteroaromatic structures are important and present in many natural and synthetic alkaloids that are employed in the field of agrochemicals, medicine, or cosmetics. Among the molecules related to this class of compounds, condensed heteroaromatic compounds bearing at least one nitrogen atom are undoubtedly the most appropriate because they generally affect the health of humans. The LR has been extensively utilized in organic chemistry as a reagent for the transformation of ketones, esters, and amides into their corresponding thio analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) A. Aimi, M. Nishimura, A. Miwa, H. Hoshino, S. Sakai and J. Higiniwa. 1989. Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett. 30: 4991–994. (b) N. Kaur and D. Kishore. 2012. Montmorillonite: An efficient, heterogeneous, and green catalyst for organic synthesis. J. Chem. Pharm. Res. 4: 991–1015. (c) N. Kaur. 2018. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun. 48: 1235–1258.

    Google Scholar 

  2. (a) J. Tois, R. Franzén and A. Koskinen. 2003. Synthetic approaches towards indoles on solid phase - recent advances and future directions. Tetrahedron 59: 5395–5405. (b) J. Dwivedi, N. Kaur, D. Kishore, S. Kumari and S. Sharma. 2016. Synthetic and biological aspects of thiadiazoles and their condensed derivatives: An overview. Curr. Top. Med. Chem. 16: 2884–2920. (c) N. Kaur and D. Kishore. 2013. An insight into hexamethylenetetramine: A versatile reagent in organic synthesis. J. Iran. Chem. Soc. 10: 1193–1228. (d) N. Kaur, J. Dwivedi and D. Kishore. 2014. Solid-phase synthesis of nitrogen containing five-membered heterocycles. Synth. Commun. 44: 1671–1729.

    Google Scholar 

  3. (a) L. Joucla and L. Djakovitch. 2009. Transition metal-catalysed, direct and site-selective N1-, C2- or C3-arylation of the indole nucleus: 20 Years of improvements. Adv. Synth. Catal. 351: 673–714. (b) N. Kaur. 2013. An insight into medicinal and biological significance of privileged scaffold: 1,4-Benzodiazepine. Int. J. Pharm. Biol. Sci. 4: 318–337. (c) N. Kaur. 2013. Solid-phase synthetic approach to the synthesis of azepine heterocycles of medicinal interest. Int. J. Pharm. Biol. Sci. 4: 357–372. (d) N. Kaur. 2018. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun. 48: 1551–1587.

    Google Scholar 

  4. D.L. Hughes. 1993. Progress in the Fischer indole reaction - a review. Org. Prep. Proced. Int. 25: 609–632.

    Google Scholar 

  5. R.D. Clark and D.B. Repke. 1984. The Leimgruber-Batcho indole synthesis. Heterocycles 22: 195–221.

    Google Scholar 

  6. S.W. Wright, L.D. McClure and D.L. Hageman. 1996. A convenient modification of the Gassman oxindole synthesis. Tetrahedron Lett. 37: 4631–4634.

    Google Scholar 

  7. D.A. Wacker and P. Kasireddy. 2002. Efficient solid-phase synthesis of 2,3-substituted indoles. Tetrahedron Lett. 43: 5189–5191.

    Google Scholar 

  8. A. Sudalai, S. Kanagasabapathy and B.C. Benicewicz. 2000. Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Org. Lett. 2: 3213–3216.

    Google Scholar 

  9. M.P. Cava and M.I. Levinson. 1985. Thionation reactions of Lawesson's reagents. Tetrahedron 41: 5061–5087.

    Google Scholar 

  10. R.A. Cherkasov, G.A. Kutyrev and A.N. Pudovik. 1985. Tetrahedron report number 186: Organothiophosphorus reagents in organic synthesis. Tetrahedron 41: 2567–2624.

    Google Scholar 

  11. M.S.J. Foreman and J.D. Woollins. 2000. Organo-P-S and P-Se heterocycles, organo-P-S and P-Se heterocycles. J. Chem. Soc. Dalton Trans. 10: 1533–1543.

    Google Scholar 

  12. T. Ozturk, E. Ertas and O. Mert. 2007. Use of Lawesson’s reagent in organic syntheses. Chem. Rev. 107: 5210–5278.

    Google Scholar 

  13. H.Z. Lecher, R.A. Greenwood, K.C. Whitehouse and T.H. Chao. 1956. The phosphonation of aromatic compounds with phosphorus pentasulfide. J. Am. Chem. Soc. 78: 518–522.

    Google Scholar 

  14. S.D. Kuduk, C. Ng, R.K. Chang and M.G. Bock. 2003. Synthesis of 2,3-diaminodihydropyrroles via thioimidate cyclopropane rearrangement. Tetrahedron Lett. 44: 1437-1440.

    Google Scholar 

  15. M. Natsume, M. Takahashi, K. Kiuchi and H. Sugaya. 1971. A Wittig reaction of N-sulfonyl lactam. Chem. Pharm. Bull. 19: 2648–2651.

    Google Scholar 

  16. J.P. Célérier, E. Deloisy, G. Lhommet and P. Maitte. 1979. Lactam ether chemistry. Cyclic beta-enamino ester synthesis. J. Org. Chem. 44: 3089–3089.

    Google Scholar 

  17. J.P. Célérier, M.G. Richard, G. Lhommet and P. Maitte. 1983. Imidoylation reactions: A simple direct synthesis of 3-amino-2-alkenoic esters (β-enaminoesters). Synthesis 3: 195–197.

    Google Scholar 

  18. M.M. Gugelchuk, D.J. Hart and Y. Tsai. 1981. Methods for converting N-alkyl lactams to vinylogous urethanes and vinylogous amides via (methylthio)alkylideniminium salts. J. Org. Chem. 46: 3671–3675.

    Google Scholar 

  19. M. Yamaguchi and I. Hirao. 1985. A direct synthesis of [(tert-butoxycarbonyl)methylidene]azacycloalkanes. J. Org. Chem. 50: 1975–1977.

    Google Scholar 

  20. K. Kobayashi and H. Suginome. 1986. Synthesis of 2-pyrrolidinylideneacetates by means of a reaction of magnesium ester enolate with γ-cyanoalkyl tosylates. Bull. Chem. Soc. Jpn. 59: 2635–2636.

    Google Scholar 

  21. A. Brandi, S. Carli and A. Goti. 1988. High regio- and stereoselective cycloaddition of a nitrone to alkylidenecyclopropanes. Heterocycles 27: 17–20.

    Google Scholar 

  22. E.G. Occhiato, A. Guarna, A. Brandi, A. Goti and F. de Sarlo. 1992. N-Bridgehead polycyclic compounds by sequential rearrangement-annulation of isoxazoline-5-spirocyclopropanes. 6. A general synthetic method for 5,6-dihydro-7(8H)- and 2,3,5,6-tetrahydro-7(1H)-indolizinones. J. Org. Chem. 57: 4206–4211.

    Google Scholar 

  23. H.M.C. Ferraz, E.O. de Oliveira, M.E. Payret-Arrua and C.A. Brandt. 1995. A new and efficient approach to cyclic beta-enamino esters and beta-enamino ketones by iodine-promoted cyclization. J. Org. Chem. 60: 7357–7359.

    Google Scholar 

  24. A. Eschenmoser. 1970. Centenary lecture. (Delivered November 1969). Roads to corrins. Quarterly Review. Chem. Soc. 24: 366–415.

    Google Scholar 

  25. P. Dubs, E. Götschi, M. Roth and A. Eschenmoser. 1970. Sulfide contraction via alkylative coupling - a method for synthesizing beta dicarbonyl systems. Chimia 24: 34.

    Google Scholar 

  26. M. Roth, P. Dubs, E. Götschi and A. Eschenmoser. 1971. Sulfidkontraktion via alkylative kupplung: Eine methode zur darstellung von β-dicarbonylderivaten. Über synthetische methoden, 1. Mitteilung. Helv. Chim. Acta 54: 710–734.

    Google Scholar 

  27. G.C. Gerrans, A.S. Howard and B.S. Orlek. 1975. General methods of alkaloid synthesis. Ambident nucleophilicity of vinylogous urethanes. Synthesis of (±)-lupinine and a functionalised hydrojulolidine derivative. Tetrahedron Lett. 40: 4171–4172.

    Google Scholar 

  28. A.S. Howard, G.C. Gerrans and C.A. Meerholz. 1980. Vinylogous urethanes in alkaloid synthesis: Formal syntheses of Elaeocarpus alkaloids. Tetrahedron Lett. 21: 1373–1374.

    Google Scholar 

  29. A.S. Howard, G.C. Gerrans and J.P. Michael. 1980. Use of vinylogous urethanes in alkaloid synthesis: Formal synthesis of ipalbidine. J. Org. Chem. 45: 1713–1715.

    Google Scholar 

  30. A.S. Howard, R.B. Katz and J.P. Michael. 1983. Thiolactams in alkaloid synthesis: A particularly short synthesis of Δ7-mesembrenone. Tetrahedron Lett. 24: 829–830.

    Google Scholar 

  31. R. Ghirlando, A.S. Howard, R.B. Katz and J.P. Michael. 1984. The application of the sulphide contraction to the synthesis of some simple pyrrolidine alkaloids. Tetrahedron 40: 2879–2884.

    Google Scholar 

  32. J.P. Michael, G.D. Hosken and A.S. Howard. 1988. Syntheses of alkyl (E)-(1-aryl-2-pyrrolidinylidene)acetates. Tetrahedron 44: 3025–3036.

    Google Scholar 

  33. J.P. Michael, A.S. Parsons and R. Hunter. 1989. Synthesis of two pyrrolidine alkaloids, peripentadenine and dinorperipentadenine. Tetrahedron Lett. 30: 4879–4880.

    Google Scholar 

  34. J.P. Michael, A.S. Howard, R.B. Katz and M.I. Zwane. 1992. Synthesis of hexahydroindol-6-ones by cycloacylation of vinylogous urethanes. Tetrahedron Lett. 33: 4751–4754.

    Google Scholar 

  35. J.P. Michael and M.I. Zwane. 1992. Synthesis of hexahydroindol-6-ones by reaction of 2-methylthiopyrrolinium salts with Nazarov reagents. Tetrahedron Lett. 33: 4755–4758.

    Google Scholar 

  36. J.P. Michael, A.S. Howard, R.B. Katz and M.I. Zwane. 1992. Formal syntheses of (±)-mesembrine and (±)-dihydromaritidine. Tetrahedron Lett. 33: 6023–6024.

    Google Scholar 

  37. C.M. Jungmann and J.P. Michael. 1992. New syntheses of (±)-lamprolobine and (±)-epilamprolobine. Tetrahedron 48: 10211–10220.

    Google Scholar 

  38. J.P. Michael, S.S.-F. Chang and C. Wilson. 1993. Synthesis of pyrrolo[1,2-a]indoles by intramolecular Heck reaction of N-(2-bromoaryl) enaminones. Tetrahedron Lett. 34: 8365–8368.

    Google Scholar 

  39. J.P. Michael and A.S. Parson. 1993. Formal synthesis of Elaeocarpus alkaloids - elaeocarpine and isoelaeocarpine. S. Afr. J. Chem. 46: 65–69.

    Google Scholar 

  40. J.P. Michael and A.S. Parsons. 1996. Chemoselective reactions of vinylogous amides, and the synthesis of two Peripentadenia alkaloids. Tetrahedron 52: 2199–2216.

    Google Scholar 

  41. J.P. Michael and D. Gravestock. 1996. Synthesis of (±)-indolizidine 209B and a new 209B diastereoisomer. Synlett 10: 981–982.

    Google Scholar 

  42. P. Michael and D. Gravestock. 1998. An enantioselective synthesis of (-)-indolizidine 167B, a skin alkaloid from a Neotropical dendrobatid frog. S. Afr. J. Chem. 51: 146–157.

    Google Scholar 

  43. J.P. Michael, C.B. de Koning, D. Gravestock, G.D. Hosken, A.S. Howard, C.M. Jungmann, R.W.M. Krause, A.S. Parsons, S.C. Pelly and T.V. Stanbury. 1999. Enaminones: Versatile intermediates for natural product synthesis. Pure Appl. Chem. 71: 979–988.

    Google Scholar 

  44. J.P. Michael and D. Gravestock. 2000. Vinylogous urethanes in alkaloid synthesis. Applications to the synthesis of racemic indolizidine 209B and its (5R*,8S *,8aS *)-(±) diastereomer, and to (−)-indolizidine 209B. J. Chem. Soc. Perkin Trans. 1 12: 1919–1928.

    Google Scholar 

  45. N. Kaniskan, D. Elmali and P.U. Civcir. 2008. Synthesis and characterization of novel heterosubstituted pyrroles, thiophenes, and furans. ARKIVOC (xii): 17–29.

    Google Scholar 

  46. L. Fieser and R.G. Kennelly. 1935. A comparison of heterocyclic systems with benzene. 1IV. Thionaphthenequinones. J. Am. Chem. Soc. 57: 1611–1616.

    Google Scholar 

  47. M.M.M. Raposo and G. Kirsch. 2001. A combination of Friedel-Crafts and Lawesson reactions to 5-substituted 2,2’-bithiophenes. Heterocycles 55: 1487–1498.

    Google Scholar 

  48. T. Nishio. 1998. Sulfur-containing heterocycles derived by reaction of ω-keto amides with Lawesson’s reagent. Helv. Chim. Acta 81: 1207–1214.

    Google Scholar 

  49. C.E. Hewton, M.C. Kimber and D.K. Taylor. 2002. A one-pot synthesis of thiophene and pyrrole derivatives from readily accessible 3,5-dihydro-1,2-dioxines. Tetrahedron Lett. 43: 3199–3201.

    Google Scholar 

  50. L. Fournier, I. Aujard, T. LeSaux, S. Maurin, S. Beaupierre, J.B. Baudin and L. Jullien. 2013. Coumarinylmethyl caging groups with red shifted absorption. Chemistry 19: 17494–17507.

    Google Scholar 

  51. S. Yamazoe, Q. Liu, L.E. McQuade, A. Deiters and J.K. Chen. 2014. Sequential gene silencing using wavelength-selective caged morpholines. Angew. Chem. Int. Ed. 53: 10114–10118.

    Google Scholar 

  52. M. Betou. 2013. Semipinacol rearrangement of cis-fused β-lactam diols into bicyclic lactams. PhD Thesis, The University of Birmingham.

    Google Scholar 

  53. S.G. Davies and O. Ichihara. 1991. Asymmetric synthesis of R-β-amino butanoic acid and S-β-tyrosine: Homochiral lithium amide equivalents for Michael additions to α,β-unsaturated esters. Tetrahedron: Asymmetry 2: 183–186.

    Google Scholar 

  54. J.F. Costello, S.G. Davies and O. Ichihara. 1994. Origins of the high stereoselectivity in the conjugate addition of lithium(α-methylbenzyl)benzylamide to t-butyl cinnamate. Tetrahedron: Asymmetry 5: 1999–2008.

    Google Scholar 

  55. K. Agapiou, D.F. Cauble and M.J. Krische. 2004. Copper-catalyzed tandem conjugate addition-electrophilic trapping: Ketones, esters, and nitriles as terminal electrophiles. J. Am. Chem. Soc. 126: 4528–4529.

    Google Scholar 

  56. K. Shiosaki. 1991. The Eschenmoser coupling reaction. B.M. Trost (Ed.). Comprehensive organic synthesis. Oxford: Pergamon Press, 2: 865–892.

    Google Scholar 

  57. A.B. Holmes, A.L. Smith, S.F. Williams, L.R. Hughes, Z. Lidert and C. Swithenbank. 1991. Stereoselective synthesis of (+-)-indolizidines 167B, 205A, and 207A. Enantioselective synthesis of (-)-indolizidine 209B. J. Org. Chem. 56: 1393–1405.

    Google Scholar 

  58. J.P. Michael, C. Accone, C.B. de Koning and C.W. van der Westhuyzen. 2008. Analogues of amphibian alkaloids: Total synthesis of (5R,8S,8aS)-(-)-8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B) and [(1S,4R,9aS)-(-)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol. Beilstein J. Org. Chem. 4: 1–7.

    Google Scholar 

  59. J.P. Michael and D. Gravestock. 1998. An expeditious synthesis of the dendrobatid indolizidine alkaloid 167B. Eur. J. Org. Chem. 5: 865–870.

    Google Scholar 

  60. M. Weymann, W. Pfrengle, D. Schollmeyer and H. Kunz. 1997. Enantioselective syntheses of 2-alkyl-, 2,6-dialkylpiperidines and indolizidine alkaloids through diastereoselective Mannich-Michael reactions. Synthesis 10: 1151–1160.

    Google Scholar 

  61. J.P. Michael. 2000. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep. 17: 579–602.

    Google Scholar 

  62. D.J. Maloney and S.J. Danishefsky. 2007. Conformational locking through allylic strain as a device for stereocontrol - total synthesis of grandisine A. Angew. Chem. Int. Ed. 46: 7789–7792.

    Google Scholar 

  63. R.A. Raphael and P. Ravenscroft. 1988. Synthesis of indolin-2-ones (oxindoles) related to mitomycin A. J. Chem. Soc. Perkin Trans. 1 7: 1823–1828.

    Google Scholar 

  64. N. Cohen, B.L. Banner, A.J. Laurenzano and L. Carozza. 1985. 2,3-O-Isopropylidene-D-erythronolactone. Org. Synth. 63: 127–132.

    Google Scholar 

  65. L.F. Tietze and S. Petersen. 2000. Stereoselective total synthesis of a novel D-homosteroid by a two fold Heck reaction. Eur. J. Org. Chem. 9: 1827–1830.

    Google Scholar 

  66. J.P. Michael, C.B. de Koning, T.T. Mudzunga and R.L. Petersen. 2006. Formal asymmetric synthesis of a 7-methoxyaziridinomitosene. Synlett 19: 3284–3288.

    Google Scholar 

  67. D.S. Dodd, R.L. Martinez, M. Kamau, Z. Ruan, K. van Kirk, C.B. Cooper, M.A. Hermsmeier, S.C. Traeger and M.A. Poss. 2005. Solid-phase synthesis of 5-substituted amino pyrazoles. J. Comb. Chem. 7: 584–588.

    Google Scholar 

  68. R. Aggarwal, V. Kumar, R. Kumar and S.P. Singh. 2011. Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J. Org. Chem. 7: 179–197.

    Google Scholar 

  69. E. Chebil and S. Jouil. 2012. Unusual course of the reaction of Lawesson’s reagent with β-phosphoryl-β’-carbethoxyhydrazones: First synthesis of 5-mercapto-3-(methylthiophosphoryl) pyrazoles. Lett. Org. Chem. 9: 320–324.

    Google Scholar 

  70. D.S. Dodd and R.L. Martinez. 2004. One-pot synthesis of 5-(substituted-amino)pyrazoles. Tetrahedron Lett. 45: 4265–4267.

    Google Scholar 

  71. M.J. Burke and B.M. Trantow. 2008. An efficient route to 3-aminoindazoles and 3-amino-7-azaindazoles. Tetrahedron Lett. 49: 4579–4581.

    Google Scholar 

  72. D. Bauer, D.A. Whittington, A. Coxon, J. Bready, S.P. Harriman, V.F. Patel, A. Polverino and J.-C. Harmange. 2008. Evaluation of indazole-based compounds as a new class of potent KDR/VEGFR-2 inhibitors. Bioorg. Med. Chem. Lett. 18: 4844–4848.

    Google Scholar 

  73. T. Yakaiah, B.P.V. Lingaiah, B. Narsaiah, B. Shireesha, B.A. Kumar, S. Gururaj, T. Parthasarathy and B. Sridhar. 2007. Synthesis and structure-activity relationships of novel pyrimido[1,2-b]indazoles as potential anticancer agents against A-549 cell lines. Bioorg. Med. Chem. Lett. 17: 3445–3453.

    Google Scholar 

  74. A.P. Piccionello, A. Pace, I. Pibiri, S. Buscemi and N. Vivona. 2006. Synthesis of fluorinated indazoles through ANRORC-like rearrangement of 1,2,4-oxadiazoles with hydrazine. Tetrahedron 62: 8792–8797.

    Google Scholar 

  75. K.W. Woods, J.P. Fisher, A. Clairborne, T. Li, S.A. Thomas, G.-D. Zhu, R.B. Diebold, X. Liu, Y. Shi, V. Klinghofer, E.K. Han, R. Guan, S.R. Magnone, E.F. Johnson, J.J. Bouska, A.M. Olson, R. de Jong, T. Oltersdorf, Y. Luo, S.H. Rosenberg, V.L. Giranda and Q. Li. 2006. Synthesis and SAR of indazole-pyridine based protein kinase B/Akt inhibitors. Bioorg. Med. Chem. 14: 6832–6846.

    Google Scholar 

  76. S. Caron and E. Vasquez. 2001. The synthesis of a selective PDE4/TNFα inhibitor. Org. Process Res. Dev. 5: 587–592.

    Google Scholar 

  77. R.J. Steffan, E. Matelan, M.A. Ashwell, W.J. Moore, W.R. Solvibile, E. Trybulski, C.C. Chadwick, S. Chippari, T. Kenney, A. Eckert, L. Borges-Marcucci, J.C. Keith, Z. Xu, L. Mosyaz and D.C. Harnish. 2004. Synthesis and activity of substituted 4-(indazol-3-yl)phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. J. Med. Chem. 47: 6435–6438.

    Google Scholar 

  78. X. Li, S. Chu, V.A. Feher, M. Khalili, Z. Nie, S. Marosiak, V. Nikulin, J. Levin, K.G. Sprankle, M.E. Tedder, R. Almassy, K. Appelt and K.M. Yager. 2003. Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J. Med. Chem. 46: 5663–5673.

    Google Scholar 

  79. Y.-K. Lee, D.J. Parks, T. Lu, T.V. Thieu, T. Markotan, W. Pan, D.F. McComsey, K.L. Milkiewicz, C.S. Crysler, N. Ninan, M.C. Abad, E.C. Giardino, B.E. Maryanoff, B.P. Damiano and M.R. Player. 2008. 7-Fluoroindazoles as potent and selective inhibitors of factor Xa. J. Med. Chem. 51: 282–297.

    Google Scholar 

  80. D. Kovács, G. Mótyán, J. Wölfling, I. Kovács, I. Zupkó and E. Frank. 2014. A facile access to novel steroidal 17-2’-(1’,3’,4’)-oxadiazoles, and an evaluation of their cytotoxic activities in vitro. Bioorg. Med. Chem. Lett. 24: 1265–1268.

    Google Scholar 

  81. D. Kovács, J. Wölfling, N. Szabó, M. Szécsi, R. Minorics, I. Zupkó and E. Frank. 2015. Efficient access to novel androsteno-17-(1’,3’,4’)-oxadiazoles and 17β-(1’,3’,4’)-thiadiazoles via N-substituted hydrazone and N,N’-disubstituted hydrazine intermediates, and their pharmacological evaluation in vitro. Eur. J. Med. Chem. 98: 13–29.

    Google Scholar 

  82. E. Montenegro, R. Echarri, C. Claver, S. Castillón, A. Moyano, M.A. Pericàs and A. Riera. 1996. New camphor-derived sulfur chiral controllers: Synthesis of (2R-exo)-10-methylthio-2-bornanethiol and (2R-exo)-2,10-bis(methylthio)bornane. Tetrahedron: Asymmetry 7: 3553–3558.

    Google Scholar 

  83. F. Merchán, J. Garín, V. Martínez and E. Meléndez. 1982. Synthesis of 2-aryliminoimidazolidines and 2-arylaminobenzimidazoles from methyl N-aryldithiocarbamates. Synthesis 6: 482–484.

    Google Scholar 

  84. M. Machaj, M. Pach, A. Wolek, A. Zabrzenska, K. Ostrowska, J. Kalinowska-Tluscik and B. Oleksyn. 2007. Succinonitrile activated by thiating agents as precursor of bis-cyclic amidines, tectons for molecular engineering. Monatsh. Chem. 138: 1273–1277.

    Google Scholar 

  85. T. Ozturk, E. Ertas and O. Mert. 2010. A Berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chem. Rev. 110: 3419–3478.

    Google Scholar 

  86. F.Z. Basha and J.F. DeBernardis. 1987. Synthesis of hexahydro-5H-benz[g]imidazo[2,1-a]isoindole via an intramolecular Diels-Alder reaction and a novel Lawesson’s reagent mediated cyclization. J. Heterocycl. Chem. 24: 789–791.

    Google Scholar 

  87. T. Prisinzano, J. Podobinski, K. Tidgewell, M. Luo and D. Swenson. 2004. Synthesis and determination of the absolute configuration of the enantiomers modafinil. Tetrahedron: Asymmetry 15: 1053–1058.

    Google Scholar 

  88. V.V. Rostovtsev, L.G. Green, V.V. Fokin and K.B. Sharpless. 2002. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41: 2596–2599.

    Google Scholar 

  89. F. Amblard, J.H. Cho and R.F. Schinazi. 2009. Cu(I)-Catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 109: 4207–4220.

    Google Scholar 

  90. J.-C. Jung, Y. Lee, J.-Y. Son, E. Lim, M. Jung and S. Oh. 2011. Convenient synthesis and biological evaluation of modafinil derivatives: Benzhydrylsulfanyl and benzhydrylsulfinyl[1,2,3]triazol-4-yl-methyl esters. Molecules 16: 10409–10419.

    Google Scholar 

  91. P. Mullen, H. Miel and M.A. McKervey. 2010. N-Boc 4-nitropiperidine: Preparation and conversion into a spiropiperidine analogue of the eastern part of maraviroc. Tetrahedron Lett. 51: 3216–3217.

    Google Scholar 

  92. S. Sathishkumar and H.P. Kavitha. 2015. Synthesis, characterization and anti-inflammatory activity of novel triazolodiazepine derivatives. J. Appl. Chem. 8: 47–52.

    Google Scholar 

  93. S.C. Bell and S.J. Childress. 1973. 1,4-Benzodiazepine-2-ones and intermediates. United States Patent 3714145.

    Google Scholar 

  94. J.B. Hester, A.D. Rudzik and B.V. Kamdar. 1971. 6-Phenyl-4H-s-triazolo[4,3-a][1,4]benzodiazepines which have central nervous system depressant activity. J. Med. Chem. 14: 1078–1081.

    Google Scholar 

  95. P.H. Richter and U. Scheefeldt. 1991. Synthesis and biological activity of 5-phenyl-1,3,4-benzotriazepines. 25. Synthesis of (1,2,4)triazolo(4,3-a)(1,3,4)benzotriazepines and related tricyclics. Pharmazie 46: 701–705.

    Google Scholar 

  96. P. Filippakopoulos, S. Picaud, O. Fedorov, M. Keller, M. Wrobel, O. Morgenstern, F. Bracher and S. Knapp. 2012. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg. Med. Chem. 20: 1878–1886.

    Google Scholar 

  97. E. Lattmann, J. Sattayasai, D.C. Billington, D.R. Poyner, P. Puapairoj, S. Tiamkao, W. Airarat, H. Singh and M. Offel. 2002. Synthesis and evaluation of N1-substituted-3-propyl-1,4-benzodiazepine-2-ones as cholecystokinin (CCK2) receptor ligands. J. Pharm. Pharmacol. 54: 827–834.

    Google Scholar 

  98. Z. Yu, C. Zhuang, Y. Wu, Z. Guo, J. Li, G. Dong, J. Yao, C. Sheng, Z. Miao and W. Zhang. 2014. Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors. Int. J. Mol. Sci. 15: 15741–15753.

    Google Scholar 

  99. B.K. Albrecht, J.E. Audia, A. Cote, V.S. Gehling, J.-C. Harmange, M.C. Hewitt, C.G. Naveschuk, A.M. Taylor and R.G. Vaswani. Bromodomain inhibitors and uses there of. WO 2012075456A.

    Google Scholar 

  100. S.S. Syeda, S. Jakkaraj and G.I. Georg. 2015. Scalable syntheses of the BET bromodomain inhibitor JQ1. Tetrahedron Lett. 56: 3454–3457.

    Google Scholar 

  101. S. Kumaraswamy, K. Mukkanti and P. Srinivas. 2012. Palladium catalyzed synthesis of quinazolino[1,4]benzodiazepine alkaloids and analogous. Tetrahedron 68: 2001–2006.

    Google Scholar 

  102. M.-P. Foloppe, I. Rault, S. Rault and M. Robba. 1993. Pyrrolo[2,1-c][1,4]benzodiazepines: Synthesis of N-substituted amidines. Heterocycles 36: 63–69.

    Google Scholar 

  103. J.B. Hester, C.G. Chidester and J. Szmuszkovicz. 1974. Synthesis and chemistry of N-methyl-6-phenyl-4H-s-triazolo[4,3-a][1,4]benzodiazepinium derivatives. J. Org. Chem. 44: 2688–2693.

    Google Scholar 

  104. K. Sorra, C.-F. Chang, S. Pusuluri, K. Mukkanti, M.-C. Laiu, B.-Y. Bao, C.-H. Su and T.-H. Chuang. 2012. Synthesis and cytotoxicity testing of new amido-substituted triazolopyrrolo[2,1-c][1,4]benzodiazepine (PBDT) derivatives. Molecules 17: 8762–8772.

    Google Scholar 

  105. M. Jesberger, T.P. Davis and L. Barner. 2003. Applications of Lawesson’s reagent in organic and organometallic syntheses. Synthesis 13: 1929–1958.

    Google Scholar 

  106. R. Gitto, V. Orlando, S. Quartarone, G. de Sarro, A. de Sarro, E. Russo, G. Ferreri and G. Chimirri. 2003. Synthesis and evaluation of pharmacological properties of novel annelated 2,3-benzodiazepine derivatives. J. Med. Chem. 46: 3758–3761.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjeet Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, N. (2022). Five-Membered N-Heterocycle Synthesis. In: Lawesson’s Reagent in Heterocycle Synthesis. Springer, Singapore. https://doi.org/10.1007/978-981-16-4655-3_1

Download citation

Publish with us

Policies and ethics