Skip to main content

Carotenoid Biosynthesis in Animals: Case of Arthropods

  • Chapter
  • First Online:
Carotenoids: Biosynthetic and Biofunctional Approaches

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1261))

Abstract

All the organisms that belong to the animal kingdom had been believed not to synthesize carotenoids de novo. However, several groups of arthropods, which contain aphids, spider mites, and flies belonging to the family Cecidomyiidae, have been unexpectedly shown to possess carotenoid biosynthesis genes of fungal origin since 2010. On the other hand, few reports have shown direct evidence corroborating the catalytic functions of the enzymes that the carotenogenic genes encode. In the present review, we want to overview the carotenoid biosynthetic pathway of the pea aphid (Acyrthosiphon pisum), which was elucidated through functional analysis of carotenogenic genes that exist on its genome using Escherichia coli that accumulates carotenoid substrates, in addition to carotenoid biosynthesis in the other carotenogenic arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blout JD, McGraw KJ (2008) Signal function of carotenoid coloration. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 4 natural functions. Birkhäuser, Basel, pp 212–236

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser Verlag, Basel/Boston/Berlin

    Book  Google Scholar 

  • Bryon A, Kurlovs AH, Dermauw W, Greenhalgh R, Riga M, Grbić M, Tirry L et al (2017) Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae. PNAS 114:E5871–E5880

    Article  CAS  Google Scholar 

  • Cobbs C, Heath J, Stireman JO III, Abbot P (2013) Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals. Mol Phylogenet Evol 68:221–228

    Article  CAS  Google Scholar 

  • Frank HA, Cogdell RJ (1993) The photochemistry and function of carotenoids in photosynthesis. In: Young AJ, Britton G (eds) Carotenoids in photosynthesis. Springer, Dordrecht, pp 252–326

    Chapter  Google Scholar 

  • Goodwin TW (1984) The biochemistry of the carotenoids. Vol. II animals. Chapman and Hall, London/New York

    Book  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  Google Scholar 

  • Misawa N (2010) Carotenoids. In: Mander L, Lui H-W (eds) Comprehensive natural products II chemistry and biology, vol 1. Elsevier, Oxford, pp 733–753

    Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    Article  CAS  Google Scholar 

  • Moise AR, Al-Babili S, Wutzel ET (2014) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193

    Article  CAS  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  Google Scholar 

  • Stahl W, Site H (2004) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    Article  Google Scholar 

  • Veeman A (1974) Carotenoid metabolism in Tetranychus urticae Koch (Acari; Tetranychidae). Comp Biochem Physiol 47B:101–116

    Google Scholar 

  • Wybouw N, Kurlos AH, Greenhalgh R, Bryon A, Kosterlitz O, Manabe Y, Osakabe M et al (2019) Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2019.1039

  • Zhang L, Wang MY, Li XP, Wang XT, Jia CL, Yang XZ, Feng RQ, Yuan ML (2018) A small set of differentially expressed genes was associated with two color morphs in natural populations of the pea aphid Acyrthosiphon pisum. Gene 651:23–32

    Article  CAS  Google Scholar 

  • Zhao C, Nabity PD (2017) Phylloxerids share ancestral carotenoid biosynthesis genes of fungal origin with aphids and adelgids. PLoS One 12:e0185484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Misawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misawa, N., Takemura, M., Maoka, T. (2021). Carotenoid Biosynthesis in Animals: Case of Arthropods. In: Misawa, N. (eds) Carotenoids: Biosynthetic and Biofunctional Approaches. Advances in Experimental Medicine and Biology, vol 1261. Springer, Singapore. https://doi.org/10.1007/978-981-15-7360-6_19

Download citation

Publish with us

Policies and ethics