Skip to main content

The Development of Epigenetics in the Study of Disease Pathogenesis

  • Chapter
  • First Online:
Book cover Epigenetics in Allergy and Autoimmunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

The study of epigenetics has its roots in the study of organism change over time and response to environmental change, although over the past several decades the definition has been formalized to include heritable alterations in gene expression that are not a result of alterations in underlying DNA sequence. In this chapter, we discuss first the history and milestones in the 100+ years of epigenetic study, including early discoveries of DNA methylation, histone posttranslational modification, and noncoding RNA. We then discuss how epigenetics has changed the way that we think of both health and disease, offering as examples studies examining the epigenetic contributions to aging, including the recent development of an epigenetic “clock”, and explore how antiaging therapies may work through epigenetic modifications. We then discuss a nonpathogenic role for epigenetics in the clinic: epigenetic biomarkers. We conclude by offering two examples of modern state-of-the-art integrated multi-omics studies of epigenetics in disease pathogenesis, one which sought to capture shared mechanisms among multiple diseases, and another which used epigenetic big data to better understand the pathogenesis of a single tissue from one disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlenstiel CL, Lim HGW, Cooper DA et al (2012) Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells. Nucleic Acids Res 40:1579–1595

    Article  CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameyar-Zazoua M, Rachez C, Souidi M et al (2012) Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol 19:998–1004

    Article  CAS  PubMed  Google Scholar 

  • Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676

    Article  CAS  PubMed  Google Scholar 

  • Basyuk E, Suavet F, Doglio A et al (2003) Human let-7 stem–loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 31:6593–6597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16:593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74:3171–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 80:5559–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brait M, Banerjee M, Maldonado L et al (2017) Promoter methylation of MCAM, ERα and ERβ in serum of early stage prostate cancer patients. Oncotarget 8:15431–15440

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    Article  CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T et al (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  CAS  PubMed  Google Scholar 

  • Burgess RC, Misteli T, Oberdoerffer P (2012) DNA damage, chromatin, and transcription: the trinity of aging. Curr Opin Cell Biol 24:724–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle PE (2015) PSA testing for prostate cancer screening. Lancet Oncol 16:e2–e3

    Article  PubMed  Google Scholar 

  • Chen BH, Marioni RE, Colicino E et al (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8:1844–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong S, Youngson NA, Whitelaw E (2007) Heritable germline epimutation is not the same as transgenerational epigenetic inheritance. Nat Genet 39:574–575; author reply 575–576

    Article  CAS  PubMed  Google Scholar 

  • Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, Felsenfeld G (1971) Structure of chromatin. Nat. New Biol 229:101–106

    Article  CAS  Google Scholar 

  • Coit P, Renauer P, Jeffries MA et al (2015) Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J Autoimmun 61:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruickshanks HA, McBryan T, Nelson DM et al (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang W, Steffen KK, Perry R et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    Article  CAS  PubMed  Google Scholar 

  • Day K, Waite LL, Thalacker-Mercer A et al (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14:R102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Andres MC, Perez-Pampin E, Calaza M et al (2015) Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis Res Ther 17:233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cecco M, Criscione SW, Peckham EJ et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1981) DNA methylation—a regulatory signal in eukaryotic gene expression. J Gen Virol 57:1–20

    Article  CAS  PubMed  Google Scholar 

  • Doi N, Zenno S, Ueda R et al (2003) Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol 13:41–46

    Article  CAS  PubMed  Google Scholar 

  • Eb P (1895) From the greeks to darwin: an outline of the development of the evolution idea. Nature 52:361

    Article  Google Scholar 

  • Farh KK-H, Marson A, Zhu J et al (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–343

    Article  CAS  PubMed  Google Scholar 

  • Ferlitsch M, Reinhart K, Pramhas S et al (2011) Sex-specific prevalence of adenomas, advanced adenomas, and colorectal cancer in individuals undergoing screening colonoscopy. JAMA 306:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ruiz I (2017) Metabolism: Calorie restriction for healthy ageing. Nat Rev Cardiol 14:190

    PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fortin PR, Abrahamowicz M, Neville C et al (1998) Impact of disease activity and cumulative damage on the health of lupus patients. Lupus 7:101–107

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freser I (2010) Przewodnik dotyczący stosowania dyrektywy 2006/42/WE w sprawie maszyn. Komisja Europejska, Przedsiębiorstwa i Przemysł

    Google Scholar 

  • Grant CD, Jafari N, Hou L et al (2017) A longitudinal study of DNA methylation as a potential mediator of age-related diabetes risk. Geroscience 39:475–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadorn E (1965) Problems of determination and transdetermination. Brookhaven Symp Biol 148:161

    Google Scholar 

  • Hannah A (1951) Localization and function of heterochromatin in Drosophila melanogaster. Adv Genet 4:87–125

    Article  CAS  PubMed  Google Scholar 

  • Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  • Harvey W (1651) Exercitationes de generatione animalium. Quibus accedunt quaedam de partu; de membranis ac humoribus uteri; & de conceptione. https://doi.org/10.5962/bhl.title.44364

  • Harvey W (1653) Anatomical exercitations, concerning the generation of living creatures: to which are added particular discourses, of births, and of conceptions, &c. By William Harvey, Doctor of Physick, and Professor of Anatomy, and Chirurgery, in the Colledge of Physitians of London. James Young

    Google Scholar 

  • Hecht A, Laroche T, Strahl-Bolsinger S et al (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592

    Article  CAS  PubMed  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1979) A new theory of carcinogenesis. Br J Cancer 40:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Ritz BR (2015) Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging 7:1130–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Gurven M, Levine ME et al (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath S, Phillips N, Heany SJ et al (2018) Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. AIDS. https://doi.org/10.1097/QAD.0000000000001854

    Article  PubMed  Google Scholar 

  • Horwitz DA (2008) Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res Ther 10:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houseman EA, Accomando WP, Koestler DC et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Chen K, Xia Z et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvin MR, Aslibekyan S, Do A et al (2018) Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study. Clin Epigenetics 10:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jähner D, Stuhlmann H, Stewart CL et al (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  PubMed  Google Scholar 

  • Jatkoe TA, Karnes RJ, Freedland SJ et al (2015) A urine-based methylation signature for risk stratification within low-risk prostate cancer. Br J Cancer 112:802–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA (1985) Altering DNA methylation with 5-azacytidine. Cell 40:485–486

    Article  CAS  PubMed  Google Scholar 

  • Jylhävä J, Pedersen NL, Hägg S (2017) Biological age predictors. EBioMedicine 21:29–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13:793–797

    Article  CAS  PubMed  Google Scholar 

  • Ko M, Huang Y, Jankowska AM et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koelsch KA, Webb R, Jeffries M et al (2013) Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse. J Autoimmun 41:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kossel A (1884) Uber einen peptonartigen bestandteil des zellkerns. Z Physiol Chem 511–515

    Google Scholar 

  • Lang L (2011) New test measures DNA methylation levels to predict colon cancer. Gastroenterology 140:5

    Article  Google Scholar 

  • Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8:686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskey RA, Gurdon JB (1970) Genetic content of adult somatic cells tested by nuclear transplantation from cultured cells. Nature 228:1332–1334

    Article  CAS  PubMed  Google Scholar 

  • Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine ME, Hosgood HD, Chen B et al (2015a) DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging 7:690–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine ME, Lu AT, Bennett DA, Horvath S (2015b) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7:1198–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine ME, Lu AT, Chen BH et al (2016) Menopause accelerates biological aging. Proc Natl Acad Sci USA 113:9327–9332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine ME, Lu AT, Quach A et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. BioRxiv 276162. https://www.biorxiv.org/search/276162

  • Lin S-Y, Hsieh S-C, Lin Y-C et al (2012) A whole genome methylation analysis of systemic lupus erythematosus: hypomethylation of the IL10 and IL1R2 promoters is associated with disease activity. Genes Immun 13:214–220

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Huang R, Sun H et al (2016) Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer. Sci Rep 6:29922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372

    Article  CAS  PubMed  Google Scholar 

  • Maegawa S, Hinkal G, Kim HS et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maegawa S, Lu Y, Tahara T et al (2017) Caloric restriction delays age-related methylation drift. Nat Commun 8:539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maierhofer A, Flunkert J, Oshima J et al (2017) Accelerated epigenetic aging in Werner syndrome. Aging 9:1143–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martino D, Maksimovic J, Joo J-H et al (2012) Genome-scale profiling reveals a subset of genes regulated by DNA methylation that program somatic T-cell phenotypes in humans. Genes Immun 13:388–398

    Article  CAS  PubMed  Google Scholar 

  • Menigatti M, Truninger K, Gebbers J-O et al (2009) Normal colorectal mucosa exhibits sex- and segment-specific susceptibility to DNA methylation at the hMLH1 and MGMT promoters. Oncogene 28:899–909

    Article  CAS  PubMed  Google Scholar 

  • Mi X-B, Zeng F-Q (2008) Hypomethylation of interleukin-4 and -6 promoters in T cells from systemic lupus erythematosus patients. Acta Pharmacol Sin 29:105–112

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi G, Tsukiyama T, Wisniewski J, Wu C (1997) Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol Cell 1:141–150

    Article  CAS  PubMed  Google Scholar 

  • Morgan TH (1911) An attempt to analyze the constitution of the chromosomes on the basis of sex-limited inheritance in Drosophila. J Exp Zool A Ecol Genet Physiol 11:365–413

    Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–334

    Article  Google Scholar 

  • O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno S, Kaplan WD, Kinosita R (1959) Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 18:415–418

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Ogasawara H, Kaneko H et al (2002) Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J Rheumatol 29:1678–1682

    CAS  PubMed  Google Scholar 

  • Pazin MJ, Kamakaka RT, Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266:2007–2011

    Article  CAS  PubMed  Google Scholar 

  • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski PC, Duriagin S, Jagodzinski PP (2005) Expression of human endogenous retrovirus clone 4-1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol 24:620–624

    Article  PubMed  Google Scholar 

  • Plant D, Webster A, Nair N et al (2016) Differential methylation as a biomarker of response to etanercept in patients with rheumatoid arthritis. Arthritis Rheumatol 68:1353–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai TS, Cole JJ, Nelson DM et al (2014) HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes Dev 28:2712–2725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reilly MT, Faulkner GJ, Dubnau J et al (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33:17577–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    Article  CAS  PubMed  Google Scholar 

  • Ruggero K, Farran-Matas S, Martinez-Tebar A, Aytes A (2018) Epigenetic regulation in prostate cancer progression. Curr Mol Biol Rep 4:101–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawalha AH, Webb R, Han S et al (2008) Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS One 3:e1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoen RE, Pinsky PF, Weissfeld JL et al (2012) Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N Engl J Med 366:2345–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  CAS  PubMed  Google Scholar 

  • Stedman E, Stedman E (1950) Cell specificity of histones. Nature 166:780–781

    Article  CAS  PubMed  Google Scholar 

  • Steinberg J, Ritchie GRS, Roumeliotis TI et al (2017) Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci Rep 7:8935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool A Ecol Genet Physiol 14:43–59

    Google Scholar 

  • Sun D, Luo M, Jeong M et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14:673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Zhu T, Wang C-Y, Ma D (2015) Binding of human SWI1 ARID domain to DNA without sequence specificity: a molecular dynamics study. J Huazhong Univ Sci Technol Med Sci 35:469–476

    Article  CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, Li Y, Lin X et al (2014) Hypomethylation of interleukin 6 correlates with renal involvement in systemic lupus erythematosus. Cent Eur J Immunol 39:203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur N, Tiwari VK, Thomassin H et al (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Krol AR, Mur LA, de Lange P et al (1990) Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14:457–466

    Article  PubMed  Google Scholar 

  • Vidal-Bralo L, Lopez-Golan Y, Mera-Varela A et al (2016) Specific premature epigenetic aging of cartilage in osteoarthritis. Aging. https://doi.org/10.18632/aging.101053

    Article  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1939) An introduction to modern genetics, by C.H. Waddington

    Google Scholar 

  • Waddington CH (1952) The epigenetics of birds. University Press, Cambridge. Google Scholar

    Google Scholar 

  • Wang L, Lin Y-L, Li B et al (2014) Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer. J Int Med Res 42:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Warner JR, Soeiro R, Birnboim HC et al (1966) Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J Mol Biol 19:349–361

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sänger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JD, Crick FH (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131

    Article  CAS  PubMed  Google Scholar 

  • Weintraub H, Tapscott SJ, Davis RL et al (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Helfand SL (2013) Chromatin structure and transposable elements in organismal aging. Front Genet 4:274

    PubMed  PubMed Central  Google Scholar 

  • Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48:581–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Li J, Suzuki K et al (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Zhou Y, Zhu B et al (2016) IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis 75:1998–2006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matlock A. Jeffries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeffries, M.A. (2020). The Development of Epigenetics in the Study of Disease Pathogenesis. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_2

Download citation

Publish with us

Policies and ethics