Skip to main content

Physiology of Oligodendroglia

  • Chapter
  • First Online:
Neuroglia in Neurodegenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1175))

Abstract

Oligodendrocytes are the myelinating cells of the CNS, producing the insulating myelin sheath that facilitates rapid electrical conduction of axonal action potentials. Oligodendrocytes arise from oligodendrocyte progenitor cells (OPCs) under the control of multiple factors, including neurotransmitters and other neuron-derived factors. A significant population of OPCs persists in the adult CNS, where they are often referred to as NG2-glia, because they are identified by their expression of the NG2 chondroitin sulphate proteoglycan (CSPG4). In the adult brain, the primary function of NG2-glia is the life-long generation of oligodendrocytes to replace myelin lost through natural ‘wear and tear’ and pathology, as well as to provide new oligodendrocytes to myelinate new connections formed in response to new life experiences. NG2-glia contact synapses and respond to neurotransmitters and potassium released during neuronal transmission; to this end, NG2-glia (OPCs) express multiple neurotransmitter receptors and ion channels, with prominent roles being identified for glutamatergic signalling and potassium channels in oligodendrocyte differentiation. Myelinating oligodendrocytes also express a wide range of neurotransmitter receptors and ion channels, together with transporters and gap junctions; together, these have critical functions in cellular ion and water homeostasis, as well as metabolism, which is essential for maintaining myelin and axon integrity. An overriding theme is that oligodendrocyte function and myelination is not only essential for rapid axonal conduction, but is essential for learning and the long-term integrity of axons and neurones. Hence, myelination underpins cognitive function and the massive computing power of the human brain and myelin loss has devastating effects on CNS function. This chapter focuses on normal oligodendrocyte physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandra IM, Constanze D, Klaus-Armin N (2018) An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. Dialogues Clin Neurosci 20:283–292

    Article  Google Scholar 

  2. Almeida RG, Lyons DA (2017) On myelinated axon plasticity and neuronal circuit formation and function. J Neurosci 37:10023–10034

    Article  CAS  Google Scholar 

  3. Amadio S, Montilli C, Magliozzi R, Bernardi G, Reynolds R, Volonte C (2010) P2Y12 receptor protein in cortical gray matter lesions in multiple sclerosis. Cereb Cortex 20:1263–1273

    Article  Google Scholar 

  4. Angulo MC, le Meur K, Kozlov AS, Charpak S, Audinat E (2008) GABA, a forgotten gliotransmitter. Prog Neurobiol 86:297–303

    Article  CAS  Google Scholar 

  5. Azim K, Angonin D, Marcy G, Pieropan F, Rivera A, Donega V, Cantu C, Williams G, Berninger B, Butt AM, Raineteau O (2017) Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity. PLoS Biol 15:e2000698

    Article  Google Scholar 

  6. Balia M, Benamer N, Angulo MC (2017) A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia 65:1821–1832

    Article  Google Scholar 

  7. Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    Article  CAS  Google Scholar 

  8. Brasko C, Butt AM (2018) Expression of Kir2.1 inward rectifying potassium channels in optic nerve glia: evidence for heteromeric association with Kir4.1 and Kir5.1. Neuroglia 1:176–187

    Article  Google Scholar 

  9. Brasko C, Hawkins V, de la Rocha IC, Butt AM (2017) Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct 222:41–59

    Article  CAS  Google Scholar 

  10. Butt AM (2006) Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54:666–675

    Article  Google Scholar 

  11. Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779

    Article  Google Scholar 

  12. Butt AM, Ransom BR (1989) Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia 2:470–475

    Article  CAS  Google Scholar 

  13. Butt AM, Vanzulli I, Papanikolaou M, de la Rocha IC, Hawkins VE (2017) Metabotropic glutamate receptors protect oligodendrocytes from acute ischemia in the mouse optic nerve. Neurochem Res 42:2468–2478

    Article  CAS  Google Scholar 

  14. Buttigieg J, Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG (2011) Molecular and electrophysiological evidence for the expression of BK channels in oligodendroglial precursor cells. Eur J Neurosci 34:538–547

    Article  Google Scholar 

  15. Chen TJ, Kula B, Nagy B, Barzan R, Gall A, Ehrlich I, Kukley M (2018) In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep 25:852–861.e7

    Article  CAS  Google Scholar 

  16. Chorghay Z, Karadottir RT, Ruthazer ES (2018) White matter plasticity keeps the brain in tune: axons conduct while glia wrap. Front Cell Neurosci 12:428

    Article  Google Scholar 

  17. Coppi E, Cellai L, Maraula G, Dettori I, Melani A, Pugliese AM, Pedata F (2015) Role of adenosine in oligodendrocyte precursor maturation. Front Cell Neurosci 9:155

    Article  Google Scholar 

  18. Elbaz B, Popko B (2019) Molecular control of oligodendrocyte development. Trends Neurosci 42:263–277

    Article  CAS  Google Scholar 

  19. Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, Ibrahim A, Ligon KL, Rowitch DH, Barres BA (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    Article  CAS  Google Scholar 

  20. Feldman DH, Horiuchi M, Keachie K, McCauley E, Bannerman P, Itoh A, Itoh T, Pleasure D (2008) Characterization of acid-sensing ion channel expression in oligodendrocyte-lineage cells. Glia 56:1238–1249

    Article  Google Scholar 

  21. Fields RD, Dutta DJ, Belgrad J, Robnett M (2017) Cholinergic signaling in myelination. Glia 65:687–698

    Article  Google Scholar 

  22. Foster AY, Bujalka H, Emery B (2019) Axoglial interactions in myelin plasticity: evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia

    Google Scholar 

  23. Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP (2017) Pharmacological properties and biological functions of the GPR17 receptor, a potential target for neuro-regenerative medicine. Adv Exp Med Biol 1051:169–192

    Article  Google Scholar 

  24. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    Article  Google Scholar 

  25. Ghosh A, Sherman DL, Brophy PJ (2018) The axonal cytoskeleton and the assembly of nodes of ranvier. Neuroscientist 24:104–110

    Article  Google Scholar 

  26. Haberlandt C, Derouiche A, Wyczynski A, Haseleu J, Pohle J, Karram K, Trotter J, Seifert G, Frotscher M, Steinhauser C, Jabs R (2011) Gray matter NG2 cells display multiple Ca2 + -signaling pathways and highly motile processes. PLoS ONE 6:e17575

    Article  CAS  Google Scholar 

  27. Habermacher C, Angulo MC, Benamer N (2019) Glutamate versus GABA in neuron-oligodendroglia communication. Glia

    Google Scholar 

  28. Hamilton N, Vayro S, Wigley R, Butt AM (2010) Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58:66–79

    Article  Google Scholar 

  29. Hamilton NB, Clarke LE, Arancibia-Carcamo IL, Kougioumtzidou E, Matthey M, Karadottir R, Whiteley L, Bergersen LH, Richardson WD, Attwell D (2017) Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length. Glia 65:309–321

    Article  Google Scholar 

  30. Hamilton NB, Kolodziejczyk K, Kougioumtzidou E, Attwell D (2016) Proton-gated Ca(2 +)-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature 529:523–527

    Article  CAS  Google Scholar 

  31. Hawkins V, Butt A (2013) TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption. Neurobiol Dis 55:87–94

    Article  CAS  Google Scholar 

  32. Ilyasov AA, Milligan CE, Pharr EP, Howlett AC (2018) The endocannabinoid system and oligodendrocytes in health and disease. Front Neurosci 12:733

    Article  Google Scholar 

  33. Itoh T, Beesley J, Itoh A, Cohen AS, Kavanaugh B, Coulter DA, Grinspan JB, Pleasure D (2002) AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem 81:390–402

    Article  CAS  Google Scholar 

  34. Jackman N, Ishii A, Bansal R (2009) Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids. Physiol (Bethesda) 24:290–297

    CAS  Google Scholar 

  35. Kiray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283:541–549

    Article  CAS  Google Scholar 

  36. Krasnow AM, Attwell D (2016) NMDA receptors: power switches for oligodendrocytes. Neuron 91:3–5

    Article  CAS  Google Scholar 

  37. Kula B, Chen TJ, Kukley M (2019) Glutamatergic signaling between neurons and oligodendrocyte lineage cells: Is it synaptic or non-synaptic? Glia

    Google Scholar 

  38. Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE, Agarwal A, Bergles DE (2018) Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife, 7

    Google Scholar 

  39. Larson VA, Zhang Y, Bergles DE (2016) Electrophysiological properties of NG2(+) cells: matching physiological studies with gene expression profiles. Brain Res 1638:138–160

    Article  CAS  Google Scholar 

  40. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  Google Scholar 

  41. Luyt K, Slade TP, Dorward JJ, Durant CF, Wu Y, Shigemoto R, Mundell SJ, Varadi A, Molnar E (2007) Developing oligodendrocytes express functional GABA(B) receptors that stimulate cell proliferation and migration. J Neurochem 100:822–840

    Article  CAS  Google Scholar 

  42. Maldonado PP, Velez-Fort M, Levavasseur F, Angulo MC (2013) Oligodendrocyte precursor cells are accurate sensors of local K + in mature gray matter. J Neurosci 33:2432–2442

    Article  CAS  Google Scholar 

  43. Marinelli C, Bertalot T, Zusso M, Skaper SD, Giusti P (2016) Systematic review of pharmacological properties of the oligodendrocyte lineage. Front Cell Neurosci 10:27

    Article  Google Scholar 

  44. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322

    Article  CAS  Google Scholar 

  45. Meyer N, Richter N, Fan Z, Siemonsmeier G, Pivneva T, Jordan P, Steinhauser C, Semtner M, Nolte C, Kettenmann H (2018) Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep 22:2383–2394

    Article  CAS  Google Scholar 

  46. Micu I, Plemel JR, Caprariello AV, Nave KA, Stys PK (2018) Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat Rev Neurosci 19:49–58

    Article  CAS  Google Scholar 

  47. Muller C, Bauer NM, Schafer I, White R (2013) Making myelin basic protein -from mRNA transport to localized translation. Front Cell Neurosci 7:169

    PubMed  PubMed Central  Google Scholar 

  48. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  Google Scholar 

  49. Ohashi K, Deyashiki A, Miyake T, Nagayasu K, Shibasaki K, Shirakawa H, Kaneko S (2018) TRPV4 is functionally expressed in oligodendrocyte precursor cells and increases their proliferation. Pflugers Arch 470:705–716

    Article  CAS  Google Scholar 

  50. Ortiz FC, Habermacher C, Graciarena M, Houry PY, Nishiyama A, Oumesmar BN, Angulo MC (2019) Neuronal activity in vivo enhances functional myelin repair. JCI Insight, 5

    Google Scholar 

  51. Paez PM, Fulton D, Colwell CS, Campagnoni AT (2009) Voltage-operated Ca(2 +) and Na(+) channels in the oligodendrocyte lineage. J Neurosci Res 87:3259–3266

    Article  CAS  Google Scholar 

  52. Papanikolaou M, Lewis A, Butt AM (2017) Store-operated calcium entry is essential for glial calcium signalling in CNS white matter. Brain Struct Funct 222:2993–3005

    Article  CAS  Google Scholar 

  53. Parpura V, Sekler I, Fern R (2016) Plasmalemmal and mitochondrial Na(+) -Ca(2 +) exchange in neuroglia. Glia 64:1646–1654

    Article  Google Scholar 

  54. Patel JR, Klein RS (2011) Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 585:3730–3737

    Article  CAS  Google Scholar 

  55. Ransom BR, Butt AM, Black JA (1991) Ultrastructural identification of HRP-injected oligodendrocytes in the intact rat optic nerve. Glia 4:37–45

    Article  CAS  Google Scholar 

  56. Rivera A, Vanzuli I, Arellano JJ, Butt A (2016) Decreased regenerative capacity of oligodendrocyte progenitor cells (ng2-glia) in the ageing brain: a vicious cycle of synaptic dysfunction, myelin loss and neuronal disruption? Curr Alzheimer Res 13:413–418

    Article  CAS  Google Scholar 

  57. Rivera A, Vanzulli I, Butt AM (2016) A central role for ATP signalling in glial interactions in the CNS. Curr Drug Targets 17:1829–1833

    Article  CAS  Google Scholar 

  58. Saab AS, Nave KA (2017) Myelin dynamics: protecting and shaping neuronal functions. Curr Opin Neurobiol 47:104–112

    Article  CAS  Google Scholar 

  59. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Perez-Samartin A, Perez-Cerda F, Bakhtiari D, Matute C, Lowel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132

    Article  CAS  Google Scholar 

  60. Saher G, Stumpf SK (2015) Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta 1851:1083–1094

    Article  CAS  Google Scholar 

  61. Santiago Gonzalez DA, Cheli VT, Zamora NN, Lama TN, Spreuer V, Murphy GG, Paez PM (2017) Conditional deletion of the l-type calcium channel Cav1.2 in NG2-positive cells impairs remyelination in mice. J Neurosci, 37, 10038–10051

    Article  Google Scholar 

  62. Schirmer L, Möbius W, Zhao C, Cruz-Herranz A, Haim LB, Cordano C, Shiow LR, Kelley KW, Sadowski B, Timmons G, Pröbstel AK (2018) Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. Elife, 7

    Google Scholar 

  63. Soliven B (2001) Calcium signalling in cells of oligodendroglial lineage. Microsc Res Tech 52:672–679

    Article  CAS  Google Scholar 

  64. Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D, Dietmann S, de Faria Jr O, Agathou S, Karadottir RT (2019) Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron, 101, 459–471.e5

    Article  Google Scholar 

  65. Stassart RM, Mobius W, Nave KA, Edgar JM (2018) The axon-myelin unit in development and degenerative disease. Front Neurosci 12:467

    Article  Google Scholar 

  66. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    Article  CAS  Google Scholar 

  67. Trevisiol A, Saab AS, Winkler U, Marx G, Imamura H, Mobius W, Kusch K, Nave KA, Hirrlinger J (2017) Monitoring ATP dynamics in electrically active white matter tracts. Elife, 6

    Google Scholar 

  68. van Bruggen D, Agirre E, Castelo-Branco G (2017) Single-cell transcriptomic analysis of oligodendrocyte lineage cells. Curr Opin Neurobiol 47:168–175

    Article  Google Scholar 

  69. Vautier F, Belachew S, Chittajallu R, Gallo V (2004) Shaker-type potassium channel subunits differentially control oligodendrocyte progenitor proliferation. Glia 48:337–345

    Article  Google Scholar 

  70. Vejar S, Oyarzun JE, Retamal MA, Ortiz FC, Orellana JA (2019) Connexin and pannexin-based channels in oligodendrocytes: implications in brain health and disease. Front Cell Neurosci 13:3

    Article  Google Scholar 

  71. Verkhratskiĭ AN, Butt A (2013) Glial physiology and pathophysiology. Chichester, West Sussex, UK; Hoboken, NJ, USA, Wiley-Blackwell

    Book  Google Scholar 

  72. Voskuhl RR, Itoh N, Tassoni A, Matsukawa MA, Ren E, Tse V, Jang E, Suen TT, Itoh Y (2019) Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci U S A 116:10130–10139

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651

    Article  CAS  Google Scholar 

  74. Williamson JM, Lyons DA (2018) Myelin dynamics throughout life: an ever-changing landscape? Front Cell Neurosci 12:424

    Article  Google Scholar 

  75. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, Emery B, Li H, Richardson WD (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217

    Article  CAS  Google Scholar 

  76. Zhang C, Rasband MN (2016) Cytoskeletal control of axon domain assembly and function. Curr Opin Neurobiol 39:116–121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the BBSRC and MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, A.M., Papanikolaou, M., Rivera, A. (2019). Physiology of Oligodendroglia. In: Verkhratsky, A., Ho, M., Zorec, R., Parpura, V. (eds) Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-13-9913-8_5

Download citation

Publish with us

Policies and ethics