Skip to main content

Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside

  • Chapter
  • First Online:
Biochemistry and Cell Biology of Ageing: Part II Clinical Science

Part of the book series: Subcellular Biochemistry ((SCBI,volume 91))

Abstract

The structural nuclear proteins known as “lamins” (A-type and B-type) provide a scaffold for the compartmentalization of genome function that is important to maintain genome stability. Mutations in the LMNA gene -encoding for A-type lamins- are associated with over a dozen of degenerative disorders termed laminopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). This devastating disease is caused by the expression of a truncated lamin A protein named “progerin”. To date, there is no effective treatment for HGPS patients, who die in their teens from cardiovascular disease. At a cellular level, progerin expression impacts nuclear architecture, chromatin organization, response to mechanical stress, and DNA transactions such as transcription, replication and repair. However, the current view is that key mechanisms behind progerin toxicity still remain to be discovered. Here, we discuss new findings about pathological mechanisms in HGPS, especially the contribution of replication stress to cellular decline, and therapeutic strategies to ameliorate progerin toxicity. In particular, we present evidence for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the rationale for testing these compounds in preclinical models of the disease in the near term, and in patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arancio W, Pizzolanti G, Genovese SI, Pitrone M, Giordano C (2014) Epigenetic involvement in Hutchinson-Gilford progeria syndrome: a mini-review. Gerontology 60(3):197–203

    Article  CAS  PubMed  Google Scholar 

  • Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, Geisler NJ, Lelliott CJ, White JK, Karp NA, Atkinson J, Kirton A, Jacobsen M, Clift D, Rodriguez R, Sanger Mouse Genetics P, Adams DJ, Jackson SP (2018) Targeting of NAT10 enhances healthspan in a mouse model of human accelerated ageing syndrome. Nat Commun 9(1):1700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borroni AP, Emanuelli A, Shah PA, Ilic N, Apel-Sarid L, Paolini B, Manikoth Ayyathan D, Koganti P, Levy-Cohen G, Blank M (2018) Smurf2 regulates stability and the autophagic-lysosomal turnover of lamin A and its disease-associated form progerin. Ageing Cell 17(2):e12732

    Article  CAS  Google Scholar 

  • Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, Nathan MR, Wan E, Frentzas S, Schweiger T, Hegedus B, Hoetzenecker K, Renyi-Vamos F, Kuczynski EA, Vasudev NS, Larkin J, Gore M, Dvorak HF, Paku S, Kerbel RS, Dome B, Reynolds AR (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374

    Article  CAS  PubMed  Google Scholar 

  • Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3(89):89ra58

    Article  CAS  PubMed  Google Scholar 

  • Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS (2005) Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 102(36):12879–12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chojnowski A, Ong PF, Dreesen O (2015) Nuclear lamina remodelling and its implications for human disease. Cell Tissue Res 360(3):621–631

    Article  PubMed  Google Scholar 

  • Cleveland RH, Gordon LB, Kleinman ME, Miller DT, Gordon CM, Snyder BD, Nazarian A, Giobbie-Hurder A, Neuberg D, Kieran MW (2012) A prospective study of radiographic manifestations in Hutchinson-Gilford progeria syndrome. Pediatr Radiol 42(9):1089–1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb AM, Murray TV, Warren DT, Liu Y, Shanahan CM (2016) Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling. Nucleus 7(5):498–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G (2005) Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cell Mol Life Sci 62(22):2669–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM (2004) Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Ageing Cell 3(4):235–243

    Article  CAS  Google Scholar 

  • Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 103(27):10271–10276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300(5628):2055

    Article  PubMed  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrzynska A, Gonzalo S, Shanahan C, Askjaer P (2016) The nuclear Lamina in health and disease. Nucleus 7:233–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingo DL, Trujillo MI, Council SE, Merideth MA, Gordon LB, Wu T, Introne WJ, Gahl WA, Hart TC (2009) Hutchinson-Gilford progeria syndrome: oral and craniofacial phenotypes. Oral Dis 15(3):187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duband-Goulet I, Woerner S, Gasparini S, Attanda W, Konde E, Tellier-Lebegue C, Craescu CT, Gombault A, Roussel P, Vadrot N, Vicart P, Ostlund C, Worman HJ, Zinn-Justin S, Buendia B (2011) Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins. Exp Cell Res 317(20):2800–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBose AJ, Lichtenstein ST, Petrash NM, Erdos MR, Gordon LB, Collins FS (2018) Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts. Proc Natl Acad Sci U S A 115(16):4206–4211

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298

    Article  CAS  PubMed  Google Scholar 

  • Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311(5767):1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Frankel D, Delecourt V, Harhouri K, De Sandre-Giovannoli A, Levy N, Kaspi E, Roll P (2018) MicroRNAs in hereditary and sporadic premature ageing syndromes and other laminopathies. Aging Cell. 2018 Apr 25:e12766. https://doi.org/10.1111/acel.12766

  • Gabriel D, Roedl D, Gordon LB, Djabali K (2015) Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Ageing Cell 14(1):78–91

    Article  CAS  Google Scholar 

  • Gabriel D, Shafry DD, Gordon LB, Djabali K (2017) Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts. Oncotarget 8(39):64809–64826

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhard-Herman M, Smoot LB, Wake N, Kieran MW, Kleinman ME, Miller DT, Schwartzman A, Giobbie-Hurder A, Neuberg D, Gordon LB (2012) Mechanisms of premature vascular ageing in children with Hutchinson-Gilford progeria syndrome. Hypertension 59(1):92–97

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z (2015) Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Rep 13(7):1396–1406

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Jenkins H, Allen T, Whitfield WG, Hutchison CJ (1995) Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts. J Cell Sci 108(Pt 11):3451–3461

    CAS  PubMed  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101(24):8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Suarez I, Redwood AB, Grotsky DA, Neumann MA, Cheng EH, Stewart CL, Dusso A, Gonzalo S (2011) A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J 30(16):3383–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo S, Kreienkamp R (2015) DNA repair defects and genome instability in Hutchinson-Gilford progeria syndrome. Curr Opin Cell Biol 34:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo S, Kreienkamp R, Askjaer P (2017) Hutchinson-Gilford progeria syndrome: a premature ageing disease caused by LMNA gene mutations. Ageing Res Rev 33:18–29

    Article  CAS  PubMed  Google Scholar 

  • Gordon LB, McCarten KM, Giobbie-Hurder A, Machan JT, Campbell SE, Berns SD, Kieran MW (2007) Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development. Pediatrics 120(4):824–833

    Article  PubMed  Google Scholar 

  • Gordon CM, Gordon LB, Snyder BD, Nazarian A, Quinn N, Huh S, Giobbie-Hurder A, Neuberg D, Cleveland R, Kleinman M, Miller DT, Kieran MW (2011) Hutchinson-Gilford progeria is a skeletal dysplasia. J Bone Miner Res 26(7):1670–1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B, Bishop WR, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, Huh SY, Schwartzman A, Kieran MW (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 109(41):16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Massaro J, D'Agostino RB Sr, Campbell SE, Brazier J, Brown WT, Kleinman ME, Kieran MW, C. Progeria Clinical Trials (2014a) Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation 130(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Rothman FG, Lopez-Otin C, Misteli T (2014b) Progeria: a paradigm for translational medicine. Cell 156(3):400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Kleinman ME, Massaro J, D'Agostino RB Sr, Shappell H, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland RH, Nazarian A, Snyder BD, Ullrich NJ, Silvera VM, Liang MG, Quinn N, Miller DT, Huh SY, Dowton AA, Littlefield K, Greer MM, Kieran MW (2016) Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation 134(2):114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Shappell H, Massaro J, D'Agostino RB Sr, Brazier J, Campbell SE, Kleinman ME, Kieran MW (2018) Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA 319(16):1687–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer MM, Kleinman ME, Gordon LB, Massaro J, D’Agostino RB Sr, Baltrusaitis K, Kieran MW, Gordon CM (2017) Pubertal progression in female adolescents with progeria. J Pediatr Adolesc Gynecol. 2018 Jun 31(3):238–241

    Google Scholar 

  • Guardiani E, Zalewski C, Brewer C, Merideth M, Introne W, Smith AC, Gordon L, Gahl W, Kim HJ (2011) Otologic and audiologic manifestations of Hutchinson-Gilford progeria syndrome. Laryngoscope 121(10):2250–2255

    Article  PubMed  PubMed Central  Google Scholar 

  • Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Levy N (2017) MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 9(9):1294–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Levy N (2018) An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 9(1):246–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R, Rai B, Cool S, Jeong JW, Wang H, Lee HS, Kozlov S, Grunert M, Keeble T, Jones CM, Meta MD, Young SG, Daar IO, Burke B, Perantoni AO, Stewart CL (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19(3):413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyn H, Moran S, Esteller M (2013) Aberrant DNA methylation profiles in the premature ageing disorders Hutchinson-Gilford Progeria and Werner syndrome. Epigenetics 8(1):28–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton BA, Liu J, Cartwright BM, Liu Y, Breitman M, Wang Y, Jones R, Tang H, Rusinol A, Musich PR, Zou Y (2017) Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. FASEB J 31(9):3882–3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MX, Sayin VI, Akula MK, Liu M, Fong LG, Young SG, Bergo MO (2013) Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340(6138):1330–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins H, Whitfield WG, Goldberg MW, Allen TD, Hutchison CJ (1995) Evidence for the direct involvement of lamins in the assembly of a replication competent nucleus. Acta Biochim Pol 42(2):133–143

    CAS  PubMed  Google Scholar 

  • Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH, Barnes RH 2nd, Hong J, Sun T, Pleasure SJ, Young SG, Fong LG (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci U S A 109(7):E423–E431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HT, Park JT, Choi K, Choi HJC, Jung CW, Kim GR, Lee YS, Park SC (2017) Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome. Ageing Cell 16(3):541–550

    Article  CAS  Google Scholar 

  • Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E (2000) Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 14(22):2855–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieran MW, Gordon L, Kleinman M (2007) New approaches to progeria. Pediatrics 120(4):834–841

    Article  PubMed  Google Scholar 

  • Kreienkamp R, Croke M, Neumann MA, Bedia-Diaz G, Graziano S, Dusso A, Dorsett D, Carlberg C, Gonzalo S (2016) Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. Oncotarget 7:30018–30031

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreienkamp R, Graziano S, Coll-Bonfill N, Bedia-Diaz G, Cybulla E, Vindigni A, Dorsett D, Kubben N, Batista LFZ, Gonzalo S (2018) A cell-intrinsic interferon-like response links replication stress to cellular ageing caused by progerin. Cell Rep 22(8):2006–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, Misteli T (2010) Identification of differential protein interactors of lamin A and progerin. Nucleus 1(6):513–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubben N, Brimacombe KR, Donegan M, Li Z, Misteli T (2015) A high-content imageing-based screening pipeline for the systematic identification of anti-progeroid compounds. Methods. 2016 Mar 1:96:46–58. https://doi.org/10.1016/j.ymeth.2015.08.024. Epub 2015 Sep 1.

  • Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, Liu GH, Misteli T (2016) Repression of the antioxidant NRF2 pathway in premature ageing. Cell 165(6):1361–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP (2014) Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344(6183):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattanzi G, Marmiroli S, Facchini A, Maraldi NM (2012) Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 56(4):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature ageing. Nat Med 11(7):780–785

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang Y, Rusinol AE, Sinensky MS, Liu J, Shell SM, Zou Y (2008) Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J 22(2):603–611

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z (2012) Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16(6):738–750

    Article  CAS  PubMed  Google Scholar 

  • Marji J, O’Donoghue SI, McClintock D, Satagopam VP, Schneider R, Ratner D, Worman HJ, Gordon LB, Djabali K (2010) Defective lamin A-Rb signaling in Hutchinson-Gilford progeria syndrome and reversal by farnesyltransferase inhibition. PLoS One 5(6):e11132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K (2007) The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular ageing in human skin. PLoS One 2(12):e1269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358(6):592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner M, Ghadge SK, Goetsch V, Wimmer A, Dorler J, Polzl G, Zaruba MM (2018) Upregulation of the ageing related LMNA splice variant progerin in dilated cardiomyopathy. PLoS One 13(4):e0196739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moir RD, Montag-Lowy M, Goldman RD (1994) Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J Cell Biol 125(6):1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Moir RD, Spann TP, Herrmann H, Goldman RD (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 149(6):1179–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L, Gerhard-Herman M, Machan JT, Kutys R, Virmani R, Collins FS, Wight TN, Nabel EG, Gordon LB (2010) Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of ageing. Arterioscler Thromb Vasc Biol 30(11):2301–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio FG, Varela I, Lara E, Puente XS, Espada J, Santoro R, Freije JM, Fraga MF, Lopez-Otin C (2010) Nuclear envelope alterations generate an ageing-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease. Ageing Cell 9(6):947–957

    Article  CAS  Google Scholar 

  • Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela I, Depetris D, de Carlos F, Cobo J, Andres V, De Sandre-Giovannoli A, Freije JM, Levy N, Lopez-Otin C (2011) Splicing-directed therapy in a new mouse model of human accelerated ageing. Sci Transl Med 3(106):106ra107

    Article  PubMed  CAS  Google Scholar 

  • Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11(10):1261–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekovic V, Gibbs-Seymour I, Markiewicz E, Alzoghaibi F, Benham AM, Edwards R, Wenhert M, von Zglinicki T, Hutchison CJ (2011) Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Ageing Cell 10(6):1067–1079

    Article  CAS  Google Scholar 

  • Pellegrini C, Columbaro M, Capanni C, D'Apice MR, Cavallo C, Murdocca M, Lattanzi G, Squarzoni S (2015) All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget 6(30):29914–29928

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash A, Gordon LB, Kleinman ME, Gurary EB, Massaro J, D’Agostino R Sr, Kieran MW, Gerhard-Herman M, Smoot L (2018) Cardiac abnormalities in patients with Hutchinson-Gilford progeria syndrome. JAMA Cardiol 3(4):326–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Prokocimer M, Barkan R, Gruenbaum Y (2013) Hutchinson-Gilford progeria syndrome through the lens of transcription. Ageing Cell 12(4):533–543

    Article  CAS  Google Scholar 

  • Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ (2011) The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 20(20):3997–4004

    Article  CAS  PubMed  Google Scholar 

  • Rork, J. F., J. T. Huang, L. B. Gordon, M. Kleinman, M. W. Kieran¸ M. G. Liang (2014). Initial cutaneous manifestations of Hutchinson-Gilford progeria syndrome. Pediatr Dermatol 31(2): 196–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature ageing disease Hutchinson-Gilford progeria syndrome. Nat Med 11(4):440–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature ageing. Proc Natl Acad Sci U S A 103(23):8703–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieprath T, Darwiche R, De Vos WH (2012) Lamins as mediators of oxidative stress. Biochem Biophys Res Commun 421(4):635–639

    Article  CAS  PubMed  Google Scholar 

  • Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ (2013) Imageing characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome. AJNR Am J Neuroradiol 34(5):1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25(12):1320–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spann TP, Moir RD, Goldman AE, Stick R, Goldman RD (1997) Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J Cell Biol 136(6):1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szelag M, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HA (2016) Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 7:48788–48812

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Hilton B, Musich PR, Fang DZ, Zou Y (2012) Replication factor C1, the large subunit of replication factor C, is proteolytically truncated in Hutchinson-Gilford progeria syndrome. Ageing Cell 11(2):363–365

    Article  CAS  Google Scholar 

  • Ullrich NJ, Gordon LB (2015) Hutchinson-Gilford progeria syndrome. Handb Clin Neurol 132:249–264

    Article  PubMed  Google Scholar 

  • Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, de Carlos F, Levy N, Freije JM, Lopez-Otin C (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature ageing. Nat Med 14(7):767–772

    Article  CAS  PubMed  Google Scholar 

  • Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 103(9):3250–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J (2008) Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. Ageing Cell 7(3):383–393

    Article  CAS  Google Scholar 

  • Vidak S, Foisner R (2016) Molecular insights into the premature ageing disease progeria. Histochem Cell Biol 145(4):401–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acin-Perez R, Enriquez JA, Lopez-Otin C, Andres V (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127(24):2442–2451

    Article  CAS  PubMed  Google Scholar 

  • Vindigni A, Lopes M (2017) Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics. Biophys Chem 225:3–9

    Article  CAS  PubMed  Google Scholar 

  • Wheaton, K., D. Campuzano, W. Ma, M. Sheinis, B. Ho, G. W. Brown, S. Benchimol (2017) Progerin-induced replication stress facilitates premature senescence in Hutchinson-Gilford progeria syndrome. Mol Cell Biol 37(14)

    Google Scholar 

  • Xiong ZM, Choi JY, Wang K, Zhang H, Tariq Z, Wu D, Ko E, LaDana C, Sesaki H, Cao K (2016) Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Ageing Cell 15(2):279–290

    Article  CAS  Google Scholar 

  • Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta M, Bendale P, Gelb MH, Young SG, Fong LG (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A 102(29):10291–10296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116(8):2115–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8(1):31–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Gonzalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kreienkamp, R., Gonzalo, S. (2019). Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. In: Harris, J., Korolchuk, V. (eds) Biochemistry and Cell Biology of Ageing: Part II Clinical Science. Subcellular Biochemistry, vol 91. Springer, Singapore. https://doi.org/10.1007/978-981-13-3681-2_15

Download citation

Publish with us

Policies and ethics