Skip to main content

Myopia Genes in Asians

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 670 Accesses

Abstract

Myopia is the most common ocular disorder causing visual impairment worldwide. It is a public health issue in many parts of the world. Compared with Caucasian or other ethnicities, its prevalence in Asians, especially Japanese, Koreans, and Chinese, is much higher. Environmental and genetic factors play important roles in myopia development. Myopia is a multifactorial disease. Time spent outdoors, amount of near work, and educational level influence myopia onset and progression. Recent advances in modern technology and molecular biology including linkage analyses, candidate gene analysis, genome-wide association studies (GWAS), whole-exome sequencing (WES), and next-generation sequencing (NGS) have led to mapping and identifying many myopia-associated gene loci and variants. Understanding the genetic basis may help in myopia prediction and prevention. This review is to summarize recent major findings in myopia genetics with a focus in Asian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. Lancet. 2012;379(9827):1739–48.

    Article  PubMed  Google Scholar 

  2. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SK. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci. 2000;41(9):2486–94.

    CAS  PubMed  Google Scholar 

  3. Curtin B. The etiology of myopia. The myopias: basic science and clinical management. Philadelphia: Harper and Row; 1985. p. 113–24.

    Google Scholar 

  4. Coppe AM, Ripandelli G, Parisi V, Varano M, Stirpe M. Prevalence of asymptomatic macular holes in highly myopic eyes. Ophthalmology. 2005;112(12):2103–9.

    Article  PubMed  Google Scholar 

  5. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91.

    Article  PubMed  Google Scholar 

  6. Fujimoto M, Hangai M, Suda K, Yoshimura N. Features associated with foveal retinal detachment in myopic macular retinoschisis. Am J Ophthalmol. 2010;150(6):863–70.

    Article  PubMed  Google Scholar 

  7. Cho BJ, Shin JY, Yu HG. Complications of pathologic myopia. Eye Contact Lens. 2016;42:9–15.

    Article  PubMed  Google Scholar 

  8. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, Smith W, Rose K, Morgan IG. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314(11):1142–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, Mitchell P. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85.

    Article  PubMed  Google Scholar 

  10. Cheng CY, Schache M, Ikram MK, Young TL, Guggenheim JA, Vitart V, et al. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am J Hum Genet. 2013;93(2):264–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan Q, Barathi VA, Cheng CY, Zhou X, Meguro A, Nakata I, et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 2012;8(6):e1002753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet. 2010;42(10):902–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F, Nakata I, Yamashiro K, Zhou X, Tam PO. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet. 2013;22(25):5288–94.

    Article  CAS  PubMed  Google Scholar 

  14. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, Eriksson N. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet. 2013;9(2):e1003299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li F, Ye Z, Zhai Y, Gong B, Jiang L, Wu H, et al. Evaluation of genome-wide susceptibility loci for high myopia in a Han Chinese population. Ophthalmic Genet. 2017:1–5.

    Google Scholar 

  16. Li YT, Xie MK, Wu J. Association between ocular axial length-related genes and high myopia in a Han Chinese population. Ophthalmologica. 2016;235(1):57–60.

    Article  CAS  PubMed  Google Scholar 

  17. Li Z, Qu J, Xu X, Zhou X, Zou H, Wang N, et al. A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. Hum Mol Genet. 2011;20(14):2861–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nakanishi H, Yamada R, Gotoh N, Hayashi H, Yamashiro K, Shimada N, et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 2009;5(9):e1000660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi Y, Gong B, Chen L, Zuo X, Liu X, Tam PO, et al. A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. Hum Mol Genet. 2013;22(11):2325–33.

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y, Qu J, Zhang D, Zhao P, Zhang Q, Tam PO, et al. Genetic variants at 13q12.12 are associated with high myopia in Han Chinese population. Am J Hum Genet. 2011;88(6):805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet. 2010;42(10):897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stambolian D, Wojciechowski R, Oexle K, Pirastu M, Li X, Raffel LJ, et al. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Hum Mol Genet. 2013;22(13):2754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Hohn R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45(3):314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao J, Mao J, Luo R, Li F, Munoz SR, Ellwein LB. The progression of refractive error in school-age children: Shunyi district. China Am J Ophthalmol. 2002;134(5):735–43.

    Article  PubMed  Google Scholar 

  25. He M, Zeng J, Liu Y, Xu J, Pokharel GP, Ellwein LB. Refractive error and visual impairment in urban children in southern China. Invest Ophthalmol Vis Sci. 2004;45(3):793–9.

    Article  PubMed  Google Scholar 

  26. Naidoo KS, Raghunandan A, Mashige KP, Govender P, Holden BA, Pokharel GP, Ellwein LB. Refractive error and visual impairment in African children in South Africa. Invest Ophthalmol Vis Sci. 2003;44(9):3764–70.

    Article  PubMed  Google Scholar 

  27. Maul E, Barroso S, Munoz SR, Sperduto RD, Ellwein LB. Refractive error study in children: results from La Florida. Chile Am J Ophthalmol. 2000;129(4):445–54.

    Article  CAS  PubMed  Google Scholar 

  28. Ojaimi E, Rose KA, Smith W, Morgan IG, Martin FJ, Mitchell P. Methods for a population-based study of myopia and other eye conditions in school children: the Sydney Myopia study. Ophthalmic Epidemiol. 2005;12(1):59–69.

    Article  PubMed  Google Scholar 

  29. Ip JM, Rose KA, Morgan IG, Burlutsky G, Mitchell P. Myopia and the urban environment: findings in a sample of 12-year-old Australian school children. Invest Ophthalmol Vis Sci. 2008;49(9):3858–63.

    Article  PubMed  Google Scholar 

  30. Li SM, Liu LR, Li SY, Ji YZ, Fu J, Wang Y, et al. Design, methodology and baseline data of a school-based cohort study in Central China: the Anyang childhood eye study. Ophthalmic Epidemiol. 2013;20(6):348–59.

    Article  CAS  PubMed  Google Scholar 

  31. Hammond CJ, Snieder H, Gilbert CE, Spector TD. Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci. 2001;42(6):1232–6.

    CAS  PubMed  Google Scholar 

  32. Lyhne N, Sjolie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45 year old twins. Br J Ophthalmol. 2001;85(12):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goss DA, Jackson TW. Clinical findings before the onset of myopia in youth: 4. Parental history of myopia. Optom Vis Sci. 1996;73(4):279–82.

    Article  CAS  PubMed  Google Scholar 

  34. The ZK, Glenn A. Fry award lecture (1995). Myopia development in childhood. Optom Vis Sci. 1997;74(8):603–8.

    Article  Google Scholar 

  35. Wu MM, Edwards MH. The effect of having myopic parents: an analysis of myopia in three generations. Optom Vis Sci. 1999;76(6):387–92.

    Article  CAS  PubMed  Google Scholar 

  36. Zadnik K, Satariano WA, Mutti DO, Sholtz RI, Adams AJ. The effect of parental history of myopia on children's eye size. JAMA. 1994;271(17):1323–7.

    Article  CAS  PubMed  Google Scholar 

  37. Lam DS, Fan DS, Lam RF, Rao SK, Chong KS, Lau JT, Lai RY, Cheung EY. The effect of parental history of myopia on children's eye size and growth: results of a longitudinal study. Invest Ophthalmol Vis Sci. 2008;49(3):873–6.

    Article  PubMed  Google Scholar 

  38. Schwartz M, Haim M, Skarsholm D. X-linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq. Clin Genet. 1990;38(4):281–6.

    Article  CAS  PubMed  Google Scholar 

  39. Guo X, Xiao X, Li S, Wang P, Jia X, Zhang Q. Nonsyndromic high myopia in a Chinese family mapped to MYP1: linkage confirmation and phenotypic characterization. Arch Ophthalmol. 2010;128(11):1473–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ratnamala U, Lyle R, Rawal R, Singh R, Vishnupriya S, Himabindu P, et al. Refinement of the X-linked nonsyndromic high-grade myopia locus MYP1 on Xq28 and exclusion of 13 known positional candidate genes by direct sequencing. Invest Ophthalmol Vis Sci. 2011;52:6814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Young TL, Ronan SM, Alvear AB, Wildenberg SC, DeWan AT, Peterson J, Oetting WS, Atwood LD, King RA. Further refinement of the MYP2 locus for autosomal dominant high myopia by linkage disequilibrium analysis. Am J Hum Genet. 1999;65(4):A454–A.

    Google Scholar 

  42. Young TL, Ronan SM, Drahozal LA, Wildenberg SC, Alvear AB, Oetting WS, et al. Evidence that a locus for familial high myopia maps to chromosome 18p. Am J Hum Genet. 1998;63(1):109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lam DS, Lee WS, Leung YF, Tam PO, Fan DS, Fan BJ, Pang CP. TGFbeta-induced factor: a candidate gene for high myopia. Invest Ophthalmol Vis Sci. 2003;44(3):1012–5.

    Article  PubMed  Google Scholar 

  44. Scavello GS Jr, Paluru PC, Zhou J, White PS, Rappaport EF, Young TL. Genomic structure and organization of the high grade Myopia-2 locus (MYP2) critical region: mutation screening of 9 positional candidate genes. Mol Vis. 2005;11:97–110.

    CAS  PubMed  Google Scholar 

  45. Young TL, Ronan SM, Alvear AB, Wildenberg SC, Oetting WS, Atwood LD, et al. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet. 1998;63:1419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paluru PC, Scavello GS, Ganter WR, Young TL. Exclusion of lumican and fibromodulin as candidate genes in MYP3 linked high grade myopia. Mol Vis. 2004;10(110):917–22.

    CAS  PubMed  Google Scholar 

  47. Lin HJ, Kung YJ, Lin YJ, Sheu JJC, Chen BH, Lan YC, et al. Association of lumican gene functional 3′-UTR polymorphism with myopia. Invest Ophthalmol Vis Sci. 2010;51:96–102.

    Article  PubMed  Google Scholar 

  48. Paluru P, Ronan SM, Heon E, Devoto M, Wildenberg SC, Scavello G, et al. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Invest Ophthalmol Vis Sci. 2003;44(5):1830–6.

    Article  PubMed  Google Scholar 

  49. Stambolian D, Ibay G, Reider L, Dana D, Moy C, Schlifka M, et al. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet. 2004;75(3):448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tran-Viet KN, Powell C, Barathi VA, Klemm T, Maurer-Stroh S, Limviphuvadh V, Soler V, Ho C, Yanovitch T, Schneider G, Li YJ, Nading E, Metlapally R, Saw SM, Goh L, Rozen S, Young TL. Mutations in SCO2 are associated with autosomal-dominant high-grade Myopia. Am J Hum Genet. 2013;92(5):820–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hammond CJ, Andrew T, Mak YT, Spector TD. A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. Am J Hum Genet. 2004;75(2):294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang QJ, Guo XM, Xiao XS, Jia XY, Li SQ, Hejtmancik JF. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612. Mol Vis. 2005;11(64–65):554–60.

    CAS  PubMed  Google Scholar 

  53. Paluru PC, Nallasamy S, Devoto M, Rappaport EF, Young TL. Identification of a novel locus on 2q for autosomal dominant high-grade myopia. Invest Ophth Vis Sci. 2005;46(7):2300–7.

    Article  Google Scholar 

  54. Zhang Q, Guo X, Xiao X, Jia X, Li S, Hejtmancik JF. Novel locus for X linked recessive high myopia maps to Xq23-q25 but outside MYP1. J Med Genet. 2006;43(5):e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wojciechowski R, Moy C, Ciner E, Ibay G, Reider L, Bailey-Wilson JE, Stambolian D. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36. Hum Genet. 2006;119(4):389–99.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nallasamy S, Paluru PC, Devoto M, Wasserman NF, Zhou J, Young TL. Genetic linkage study of high-grade myopia in a Hutterite population from South Dakota. Mol Vis. 2007;13:229–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lam CY, Tam PO, Fan DS, Fan BJ, Wang DY, Lee CW, Pang CP, Lam DS. A genome-wide scan maps a novel high myopia locus to 5p15. Invest Ophthalmol Vis Sci. 2008;49(9):3768–78.

    Article  PubMed  Google Scholar 

  58. Naiglin L, Gazagne C, Dallongeville F, Thalamas C, Idder A, Rascol O, et al. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. J Med Genet. 2002;39(2):118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paget S, Julia S, Vitezica ZG, Soler V, Malecaze F, Calvas P. Linkage analysis of high myopia susceptibility locus in 26 families. Mol Vis. 2008;14:2566–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ciner E, Wojciechowski R, Ibay G, Bailey-Wilson JE, Stambolian D. Genomewide scan of ocular refraction in African-American families shows significant linkage to chromosome 7p15. Genet Epidemiol. 2008;32(5):454–63.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang Z, Xiao X, Li S, Zhang Q. Clinical and linkage study on a consanguineous Chinese family with autosomal recessive high myopia. Mol Vis. 2009;15:312–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma JH, Shen SH, Zhang GW, Zhao DS, Xu C, Pan CM, Jiang H, Wang ZQ, Song HD. Identification of a locus for autosomal dominant high myopia on chromosome 5p13.3-p15.1 in a Chinese family. Mol Vis. 2010;16:2043–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shi Y, Li YR, Zhang DD, Zhang H, Li YF, Lu F, Liu XQ, He F, Gong B, Cai L, Li RQ, Liao SH, Ma S, Lin H, Cheng J, Zheng HC, Shan Y, Chen B, Hu JB, Jin X, Zhao PQ, Chen YY, Zhang Y, Lin Y, Li X, Fan YC, Yang HM, Wang J, Yang ZL. Exome sequencing identifies ZNF644 mutations in high Myopia. Plos Genetics. 2011;7(6):e1002084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum Genet. 2013;132(8):913–21.

    Article  CAS  PubMed  Google Scholar 

  65. Aldahmesh MA, Khan AO, Alkuraya H, Adly N, Anazi S, Al-Saleh AA, et al. Mutations in LRPAP1 are associated with severe myopia in humans. Am J Hum Genet. 2013;93(2):313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang D, Li JL, Xiao XS, Li SQ, Jia XY, Sun WM, Guo XM, Zhang QJ. Detection of mutations in LRPAP1, CTSH, LEPREL1, ZNF644, SLC39A5, and SCO2 in 298 families with early-onset high myopia by exome sequencing. Invest Ophthalmol Vis Sci. 2015;56(1):339–45.

    Article  CAS  Google Scholar 

  67. Guo H, Jin X, Zhu T, Wang T, Tong P, Tian L, et al. SLC39A5 mutations interfering with the BMP/TGF-beta pathway in non-syndromic high myopia. J Med Genet. 2014;51(8):518–25.

    Article  CAS  PubMed  Google Scholar 

  68. Guo H, Tong P, Liu Y, Xia L, Wang T, Tian Q, et al. Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia. Genet Med. 2015;17(4):300–6.

    Article  CAS  PubMed  Google Scholar 

  69. Fan Q, Verhoeven VJ, Wojciechowski R, Barathi VA, Hysi PG, Guggenheim JA, et al. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat Commun. 2016;7:11008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia. Vis Res. 1995;35(9):1271–81.

    Article  CAS  PubMed  Google Scholar 

  71. Zhuang H, Zhang R, Shu Q, Jiang R, Chang Q, Huang X, Jiang C, Xu G. Changes of TGF-beta2, MMP-2, and TIMP-2 levels in the vitreous of patients with high myopia. Graefes Arch Clin Exp Ophthalmol. 2014;252(11):1763–7.

    Article  CAS  PubMed  Google Scholar 

  72. Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996;37(7):1380–95.

    CAS  PubMed  Google Scholar 

  73. Liang CL, Wang HS, Hung KS, Hsi E, Sun A, Kuo YH, Juo SH. Evaluation of MMP3 and TIMP1 as candidate genes for high myopia in young Taiwanese men. Am J Ophthalmol. 2006;142(3):518–20.

    Article  CAS  PubMed  Google Scholar 

  74. Siegwart JT Jr, Norton TT. Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery. Invest Ophthalmol Vis Sci. 2001;42(6):1153–9.

    PubMed  Google Scholar 

  75. Siegwart JT Jr, Norton TT. The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery. Invest Ophthalmol Vis Sci. 2002;43(7):2067–75.

    PubMed  Google Scholar 

  76. Wojciechowski R, Bailey-Wilson JE, Stambolian D. Association of matrix metalloproteinase gene polymorphisms with refractive error in Amish and Ashkenazi families. Invest Ophthalmol Vis Sci. 2010;51(10):4989–95.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Norton T, Miller E. Collagen and protein-levels in Sclera during normal development, induced Myopia, and recovery in tree shrews. Invest Ophthalmol Vis Sci. 1995;

    Google Scholar 

  78. Inamori Y, Ota M, Inoko H, Okada E, Nishizaki R, Shiota T, et al. The COL1A1 gene and high myopia susceptibility in Japanese. Hum Genet. 2007;122(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang D, Shi Y, Gong B, He F, Lu F, Lin H, et al. An association study of the COL1A1 gene and high myopia in a Han Chinese population. Mol Vis. 2011;17:3379–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Majava M, Bishop PN, Hagg P, Scott PG, Rice A, Inglehearn C, Hammond CJ, Spector TD, Ala-Kokko L, Mannikko M. Novel mutations in the small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat. 2007;28(4):336–44.

    Article  CAS  PubMed  Google Scholar 

  81. Wang GF, Ji QS, Qi B, Yu GC, Liu L, Zhong JX. The association of lumican polymorphisms and high myopia in a Southern Chinese population. Int J Ophthalmol. 2017;10(10):1516–20.

    PubMed  PubMed Central  Google Scholar 

  82. Deng ZJ, Shi KQ, Song YJ, Fang YX, Wu J, Li G, Tang KF, Qu J. Association between a lumican promoter polymorphism and high myopia in the Chinese population: a meta-analysis of case-control studies. Ophthalmologica. 2014;232(2):110–7.

    Article  PubMed  Google Scholar 

  83. McBrien NA, Lawlor P, Gentle A. Scleral remodeling during the development of and recovery from axial myopia in the tree shrew. Invest Ophthalmol Vis Sci. 2000;41(12):3713–9.

    CAS  PubMed  Google Scholar 

  84. Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279(18):18121–6.

    Article  CAS  PubMed  Google Scholar 

  85. Zha Y, Leung KH, Lo KK, Fung WY, Ng PW, Shi MG, et al. TGFB1 as a susceptibility gene for high myopia: a replication study with new findings. Arch Ophthalmol. 2009;127(4):541–8.

    Article  CAS  PubMed  Google Scholar 

  86. Lin HJ, Wan L, Tsai Y, Tsai YY, Fan SS, Tsai CH, Tsai FJ. The TGFbeta1 gene codon 10 polymorphism contributes to the genetic predisposition to high myopia. Mol Vis. 2006;12:698–703.

    CAS  PubMed  Google Scholar 

  87. Lin HJ, Wan L, Tsai Y, Liu SC, Chen WC, Tsai SW, Tsai FJ. Sclera-related gene polymorphisms in high myopia. Mol Vis. 2009;15:1655–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jia Y, Hu DN, Zhou J. Human aqueous humor levels of TGF- beta2: relationship with axial length. Biomed Res Int. 2014;2014:258591.

    PubMed  PubMed Central  Google Scholar 

  89. Han W, Yap MK, Wang J, Yip SP. Family-based association analysis of hepatocyte growth factor gene polymorphisms in high myopia. Invest Ophthalmol Vis Sci. 2006;47(6):2291–9.

    Article  PubMed  Google Scholar 

  90. Yang X, Liu X, Peng J, Zheng H, Lu F, Gong B, et al. Evaluation of MYOC, ACAN, HGF, and MET as candidate genes for high myopia in a Han Chinese population. Genet Test Mol Bio. 2014;18(6):446–52.

    Article  CAS  Google Scholar 

  91. Feldkaemper MP, Neacsu I, Schaeffel F. Insulin acts as a powerful stimulator of axial myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(1):13–23.

    Article  PubMed  Google Scholar 

  92. Mak JY, Yap MK, Fung WY, Ng PW, Yip SP. Association of IGF1 gene haplotypes with high myopia in Chinese adults. Arch Ophthalmol. 2012;130(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  93. Zidan HE, Rezk NA, Fouda SM, Mattout HK. Association of Insulin-like Growth Factor-1 Gene Polymorphisms with different types of Myopia in Egyptian patients. Genet Test Mol Biomarkers. 2016;20(6):291–6.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang D, Zeng G, Hu J, McCormick K, Shi Y, Gong B. Association of IGF1 polymorphism rs6214 with high myopia: a systematic review and meta-analysis. Ophthalmic Genet. 2017;38(5):434–9.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang X, Zhou X, Qu X. The association between IGF-1 polymorphisms and high myopia. Int J Clin Exp Med. 2015;8(6):10158–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoshida M, Meguro A, Yoshino A, Nomura N, Okada E, Mizuki N. Association study of IGF1 polymorphisms with susceptibility to high myopia in a Japanese population. Clin Ophthalmol. 2013;7:2057–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Simpson TI, Price DJ. Pax6; a pleiotropic player in development. Bioassays. 2002;24:1041–51.

    Article  CAS  Google Scholar 

  98. Zhang X, Friedman A, Heaney S, Purcell P, Maas RL. Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis. Genes Dev. 2002;16(16):2097–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ashery-Padan R, Gruss P. Pax6 lights-up the way for eye development. Curr Opin Cell Biol. 2001;13(6):706–14.

    Article  CAS  PubMed  Google Scholar 

  100. Han W, Leung KH, Fung WY, Mak JY, Li YM, Yap MK, Yip SP. Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families. Invest Ophthalmol Vis Sci. 2009;50(1):47–56.

    Article  PubMed  Google Scholar 

  101. Ng TK, Lam CY, Lam DS, Chiang SW, Tam PO, Wang DY, Fan BJ, Yam GH, Fan DS, Pang CP. AC and AG dinucleotide repeats in the PAX6 P1 promoter are associated with high myopia. Mol Vis. 2009;15:2239–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liang CL, Hsi E, Chen KC, Pan YR, Wang YS, Juo SH. A functional polymorphism at 3′UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese. Invest Ophthalmol Vis Sci. 2011;52(6):3500–5.

    Article  CAS  PubMed  Google Scholar 

  103. Jiang B, Yap MK, Leung KH, Ng PW, Fung WY, Lam WW, Gu YS, Yip SP. PAX6 haplotypes are associated with high myopia in Han Chinese. PLoS One. 2011;6(5):e19587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tang SM, Rong SS, Young AL, Tam PO, Pang CP, Chen LJ. PAX6 gene associated with high myopia: a meta-analysis. Optom Vis Sci. 2014;91(4):419–29.

    Article  PubMed  Google Scholar 

  105. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, Tan D. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the treatment of Myopia 2). Ophthalmology. 2012;119(2):347–54.

    Article  PubMed  Google Scholar 

  106. Chia A, Lu QS, Tan D. Five-year clinical trial on Atropine for the treatment of Myopia 2: Myopia control with Atropine 0.01% eye drops. Ophthalmology. 2016;123(2):391–9.

    Article  PubMed  Google Scholar 

  107. Lin HJ, Wan L, Chen WC, Lin JM, Lin CJ, Tsai FJ. Muscarinic acetylcholine receptor 3 is dominant in myopia progression. Invest Ophthalmol Vis Sci. 2012;53(10):6519–25.

    Article  CAS  PubMed  Google Scholar 

  108. Lin HJ, Wan L, Tsai Y, Chen WC, Tsai SW, Tsai FJ. Muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia. Mol Vis. 2009;15:1774–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao YY, Zhang FJ, Zhu SQ, Duan H, Li Y, Zhou ZJ, Ma WX, Li WN. The association of a single nucleotide polymorphism in the promoter region of the LAMA1 gene with susceptibility to Chinese high myopia. Mol Vis. 2011;17:1003–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishizaki R, Ota M, Inoko H, Meguro A, Shiota T, Okada E, Mok J, Oka A, Ohno S, Mizuki N. New susceptibility locus for high myopia is linked to the uromodulin-like 1 (UMODL1) gene region on chromosome 21q22.3. Eye (Lond). 2009;23(1):222–9.

    Article  CAS  Google Scholar 

  111. Ho DW, Yap MK, Ng PW, Fung WY, Yip SP. Association of high myopia with crystallin beta A4 (CRYBA4) gene polymorphisms in the linkage-identified MYP6 locus. PLoS One. 2012;7(6):e40238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu HP, Lin YJ, Lin WY, Wan L, Sheu JJ, Lin HJ, Tsai Y, Tsai CH, Tsai FJ. A novel genetic variant of BMP2K contributes to high myopia. J Clin Lab Anal. 2009;23(6):362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tang WC, Yip SP, Lo KK, Ng PW, Choi PS, Lee SY, Yap MK. Linkage and association of myocilin (MYOC) polymorphisms with high myopia in a Chinese population. Mol Vis. 2007;13:534–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Guo H, Tong P, Peng Y, Wang T, Liu Y, Chen J, et al. Homozygous loss-of-function mutation of the LEPREL1 gene causes severe non-syndromic high myopia with early-onset cataract. Clin Genet. 2014;86(6):575–9.

    Article  CAS  PubMed  Google Scholar 

  115. Li J, Gao B, Xiao X, Li S, Jia X, Sun W, Guo X, Zhang Q. Exome sequencing identified null mutations in LOXL3 associated with early-onset high myopia. Mol Vis. 2016;22:161–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jin ZB, Wu J, Huang XF, Feng CY, Cai XB, Mao JY, et al. Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proc Natl Acad Sci U S A. 2017;114(16):4219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fan Q, Wojciechowski R, Kamran Ikram M, Cheng CY, Chen P, Zhou X, et al. Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies. Hum Mol Genet. 2014;23(2):546–54.

    Article  CAS  PubMed  Google Scholar 

  118. Aschard H, Hancock DB, London SJ, Kraft P. Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects. Hum Hered. 2010;70(4):292–300.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

Shumin Tang, Yu Meng Wang, Aziz K. W. Kam, Tommy C. Y. Chan, Calvin C. P. Pang, Jason C. S. Yam, and Guy L. J. Chen declare that they have no conflict of interest. No human or animal studies were performed by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy L. J. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, S. et al. (2019). Myopia Genes in Asians. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics