Skip to main content

Insect Pest Management

  • Chapter
  • First Online:
Pests and Their Management

Abstract

Although insects represent the major portion of the existing biodiversity, some of the species are a curse to human beings because they cause food loss and spread diseases. The modern agricultural practices have also altered the bionomics and behaviour of many naturally occurring insect species and have lowered their key natural mortality factors. However, in spite of comprehensive measures of crop protection, about 10% of agricultural yield is reduced globally by insect pests before harvest. While the use of chemical pesticides has increased by 15- to 20-folds in the past 40 years, the expected crop losses to pests have also increased. Hence, there is a necessity to develop pest management strategies that would be based on the rational selection, integration and implementation of available compatible control methods, such as cultural, physical, mechanical, biological, legal, behavioural, hormonal and genetic. Thus, in the present chapter, attempts have been made to emphasize insect pests, damages caused by them and ways by which ecofriendly approaches may be developed to control their increasing populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aluja M, Prokopy RJ (1993) Host odor and visual stimulus interaction during intratree host finding behavior of Rhagoletis pomonella flies. J Chem Ecol 19:2671–2696

    Article  PubMed  CAS  Google Scholar 

  • Arn H, Toth M, Priesner E (1992) List of sex pheromones of Lepidoptera and related attractants, 2nd edn. Wadenswil, Switzerland: OILB/IOBC-WPRS. 179 pp

    Google Scholar 

  • Asai TA, Kajihara M, Fukada F, Makekawa S (1985) Studies on the mode of action of buprofezin II. Effects on reproduction of the brown planthopper, Nivaparvata lugens Stal (Homoptera: Delphacidae). Appl Entomol Zool 20:111–117

    Article  Google Scholar 

  • Ascher KR (1993) Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch Insect Biochem Physiol 22:433–449

    Article  CAS  Google Scholar 

  • Atkinson PW, Pinkerton AC, O’Brochta DA (2001) Genetic transformation systems in insects. Annu Rev Entomol 46:317–346

    Article  PubMed  CAS  Google Scholar 

  • Attathom T (2002) Biotechnology for insect pest control. In: Proceedings of sat. forum, “sustainable agricultural system in Asia,” Nagoya: June (2002)

    Google Scholar 

  • Ave DA (1995) Stimulation of feeding: insect control agents. In: Chapman RF, de Boer G (eds) Regulatory mechanisms in insect feeding. Chapman & Hall, New York, pp 345–363

    Chapter  Google Scholar 

  • Awad TI, Ӧnder F, Kismali Ş (1998) Azadirachta indica A. Juss (Meliaceae) agacindan elde edilen dogal pestisitler uzerinde bir inceleme. Turk Entomol Derg 22:225–240

    Google Scholar 

  • Bakke A, Lie R (1989) Mass trapping. In: Jutsum AR, Gordon RFS (eds) Insect pheromones in plant protection. Wiley, Chichester, pp 67–87

    Google Scholar 

  • Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc B 363:761–776

    Article  CAS  Google Scholar 

  • Bansiddhi K (2000) Combination treatments with irradiation for controlling orchid thrips, Thrips Palmi Karny. In: Report, 2nd research coordination meeting on irradiation as a phytosanitary treatment for food and agricultural commodities. FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna

    Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Johnson TB, Carlton BC (1999) Bacillus thuringiensis natural and recombinant bioinsecticide products. In: Hall FR, Menn JJ (eds) Biopesticides use and delivery. Methods in Biotechnology No. 5. Humana Press Inc., Totowa, pp 189–209

    Google Scholar 

  • Bazdyrev GI (2000) Crop rotations and intercropping as a way of weed control. Zashchita I Karantin Rastenii 10

    Google Scholar 

  • Belinato TA, Martins AJ, Lima JBP, Lima-Camara TND, Peixoto AA, Valle D (2009) Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti. Mem Inst Oswaldo Cruz 104(1):43–47

    Article  PubMed  CAS  Google Scholar 

  • Bellows TS, Fisher TW (1999) Handbook biological control. Academic, San Diego

    Google Scholar 

  • Bennet FD (1971) Some recent successes in the field of biological control in the West Indies. Revista Peruana de Entomologia 14(2):369–373

    Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host- plant selection by phytophagous insects. Chapman and Hall, London

    Book  Google Scholar 

  • Bhatia V, Maisnam J, Jain A, Sharma KK, Bhattacharya R (2015) Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase 2. Ann Bot 115(4):581–591

    Article  PubMed  CAS  Google Scholar 

  • Bhatti JS, Van Kooten GC, Apps MJ, Laird LD, Campbell ID, Campbell C, Turetsky MR, Yu Z, Banfield E (2003) Carbon balance and climate change in boreal forests. In: Towards sustainable management of the boreal forest, pp 799–855

    Google Scholar 

  • Biddinger DJ, Hull LA, Mcpheron BA (1996) Cross-resistance and synergism in azinphosmethyl resistant and susceptible strains of tufted apple bud moth (Lepidoptera: Tortricidae) to various insect growth regulators and avarmectin. J Econ Entomol 89:274–287

    Article  CAS  Google Scholar 

  • Bjerke JW, Karlsen SR, Høgda KA, Malnes E, Jepsen JU, Lovibond S, Vikhamar-Schuler D, Tømmervik H (2014) Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ Res Lett 9(8):084006

    Google Scholar 

  • Björkman C, Bylund H, Klapwijk MJ, Kollberg I, Schroeder M (2011) Insect pests in future forests: more severe problems? Forests 2(2):474–485

    Article  Google Scholar 

  • Blaney WM, Simmonds MSJ, Ley SV, Katz RB (1987) An electrophysiological and behavioural study of insect antifeedant properties of natural and synthetic drimane-related compounds. Physiol Entomol 12:281–291

    Article  CAS  Google Scholar 

  • Boiteau G, Lynch DH, Martin RC (2008) Influence of fertilization on the Colorado potato beetle, Leptinotarsa decemlineata, in organic potato production. Environ Entomol 37(2):575–585

    PubMed  CAS  Google Scholar 

  • Borden JH (1988) Use of semiochemicals to manage coniferous tree pests in western Canada

    Google Scholar 

  • Bottrell DR (1979) Integrated pest management: definition, features, and scope. In: Council on environmental quality. Integrated pest management. U.S. Government Printing Office, Washington, DC, pp 19–26

    Google Scholar 

  • Buchel KH (1983) Chemistry of pesticides. Wiley, New York. 518 pp

    Google Scholar 

  • Bull DL, Meola RW (1993) Effect and fate of the insect growth regulator pyriproxyfen after application to the horn fly (Diptera: Muscidae). J Econ Entomol 86:1754–1760

    Article  CAS  Google Scholar 

  • Buntin GD, Hudson RD (1991) Spring control of the hessian fly (Diptera: Cecidomyiidae) in winter wheat using insecticides. J Econ Entomol 84(6):1913–1919

    Article  CAS  Google Scholar 

  • Butenandt A (1959) Uber den Sexuallockstoff des Seidenspinners Bombyx mori; Reindarstellung und Konstitution. Z Naturforsch Teil B 14:283–284

    Google Scholar 

  • Campion DG, Nesbitt BF (1981) Lepidopteran sex pheromones and pest management in developing countries. Int J Pest Manag 27(1):53–61

    Google Scholar 

  • Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585

    Article  Google Scholar 

  • Carruthers RI, Onsager JA (1993) Perspective on the use of exotic natural enemies for biological control of pest grasshoppers (Orthoptera: Acrididae). Environ Entomol 22:885–903

    Article  Google Scholar 

  • Carton B, Smagghe G, Tirry L (2003) Toxicity of two ecdysone agonists, halofenozide and metoxyfenozide, against the multicolored Asian lady beetle, Harmonia axyridis, (Col., Coccinallidae). J Appl Entomol 127:240–242

    Article  CAS  Google Scholar 

  • Castresana J, Gagliano E, Puhl L, Bado S, Vianna L, Castresana M (2008) Attraction of thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to light traps in Gerbera jamesonii (G.) crops. IDESIA 26:51–56

    Article  Google Scholar 

  • Cate JR, Hinkle MK (1994) Integrated pest management: the path of a paradigm. National Audubon Society, Washington, DC

    Google Scholar 

  • Caterino MS, Cho S, Sperling FA (2000) The current state of insect molecular systematics: a thriving tower of babel. Annu Rev Entomol 45(1):1–54

    Article  PubMed  CAS  Google Scholar 

  • Chambers DL (1978) Attractants for fruit fly survey and control. In: Shorey HH, McKelvey JJ (eds) Chemical control of insect behavior: theory and application. Wiley, New York, pp 327–344

    Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge, 770 pp

    Google Scholar 

  • Chapman RF (2012) The insects: structure and function, 5th edn. Cambridge University Press, Cambridge, 959 pp

    Google Scholar 

  • Charmillot PJ, Gourmelon A, Fabre AL, Pasquier D (2001) Ovicidal and larvicidal effectiveness of several insect growth inhibitors and regulators on the codling moth Cydia pomonella L. (Lep., Tortricidae). J Appl Entomol 125(3):147–153

    Article  CAS  Google Scholar 

  • Chau A, Heinz KM (2006) Manipulating fertilization: a management tactic against Frankliniella occidentalis on potted chrysanthemum. Entomol Exp Appl 120(3):201–209

    Article  Google Scholar 

  • Chau A, Heinz KM, Davies FT (2005) Influences of fertilization on Aphis gossypii and insecticide usage. J Appl Entomol 129(2):89–97

    Article  CAS  Google Scholar 

  • Chow A, Chau A, Heinz KM (2009) Reducing fertilization for cut roses: effect on crop productivity and twospotted spider mite abundance, distribution, and management. J Econ Entomol 102(5):1896–1907

    Article  PubMed  CAS  Google Scholar 

  • Cloyd RA, Bethke JA (2009) Pesticide use in ornamental production: what are the benefits? Pest Manag Sci 65(4):345–350

    Article  PubMed  CAS  Google Scholar 

  • Coppel HC, Mertins JW (1977) Biological insect pest suppression. Advanced series in agricultural sciences, vol 4. Springer, Berlin

    Google Scholar 

  • Cox PD (2004) Potential for using semiochemicals to protect stored products from insect infestation. J Stored Prod Res 40:1–25

    Article  CAS  Google Scholar 

  • Crump NS, Cother EJ, Ash GJ (1999) Clarifying the nomenclature in microbial weed control. Biocontrol Sci Tech 9:89–97

    Article  Google Scholar 

  • Cunningham RT, Kobayashi RM, Miyashita DH (1990) The male lures of tephritid fruit flies. In: Behavior modifying chemicals for insect management: applications of pheromones and other attractants. Marcel Dekker, New York, pp 113–129

    Google Scholar 

  • Curtis RK, Barnes MM (1977) Oviposition and development of the navel orangeworm in relation to almond maturation. J Econ Entomol 70:395–398

    Article  Google Scholar 

  • Curtis CE, Clark JD (1979) Responses of navel orangeworm moths to attractants evaluated as oviposition stimulants in an almond orchard. Environ Entomol 8:330–333

    Article  CAS  Google Scholar 

  • Curtis CF, Lines L, Baolin L, Renz A (1989) Natural and synthetic repellents. In: Curtis CF (ed) Appropriate technology in vector control. CRC Press, Boca Raton, pp 75–92

    Google Scholar 

  • Dauphin G, Coquillard P, Colazza S, Peri E, Wajnberg E (2009) Host kairomone learning and foraging success in an egg parasitoid: a simulation model. Ecol Entomol 34:193–203

    Article  Google Scholar 

  • Demir I, Nalcacoglu R, Demirbag Z (2008) The significance of insect viruses in biotechnology. Tarim Bilimleri Dergisi 14:193–201

    Google Scholar 

  • Dent D (2000) Insect pest management. CABI, 432 pp

    Google Scholar 

  • Desneux N, Rafalimanana H, Kaiser L (2004) Dose-response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere 54(5):619–627

    Article  PubMed  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  PubMed  CAS  Google Scholar 

  • Devendrappa KJ (2005) Nonpesticide methods for controlling diseases and insect pests. In: Ooi, PAC (eds) IPM expert, FAO, Bangkok, pp 81–91

    Google Scholar 

  • Dhawan AK, Kumar S, Singh S (2009) Effect of insecticide resistance management (irm) strategy on the predatory fauna of cotton ecosystem. Pestic Res J 21:71–74

    Google Scholar 

  • Dhingra S, Nathala E, Walia S, Parmar BS (2006) Effect of plant origin insect growth regulators on emergence and survival of endoparasitic wasp, Apanteles obliqua (Hymenoptera: Braconidae). J Entomol Res 30:259–261

    CAS  Google Scholar 

  • Diaz-Montano J, Reese JC, Schapaugh WT, Campbell LR (2006) Characterization of antibiosis and antixenosis to the soybean aphid (Hemiptera: Aphididae) in several soybean genotypes. J Econ Entomol 99(5):1884–1889

    Article  PubMed  Google Scholar 

  • Diaz-Montano J, Reese JC, Louis J, Campbell LR, Schapaugh WT (2007) Feeding behavior by the soybean aphid (Hemiptera: Aphididae) on resistant and susceptible soybean genotypes. J Econ Entomol 100(3):984–989

    Article  PubMed  Google Scholar 

  • Ding W, Shaaya E, Wang JJ, Zhao ZM, Goa F (2002) Acute lethal effect of two insect growth regulators on Liposcelis entomophila (Psocoptera; Liposcellididae). Zool Res 23:173–176

    CAS  Google Scholar 

  • Drum C (1980) Soil chemistry of pesticides, PPG industries, Inc., USA

    Google Scholar 

  • Duraimurugan P, Regupathy K (2005) Push pull strategy with trap crops, neem and nuclear polyhedrosis virus for insecticide resistance management in Helicoverpa armigera (Hubner) in cotton. Am J Appl Sci 2:1042–1048

    Article  Google Scholar 

  • Edwards OR, Hoy MA (1993) Polymorphism in two parasitoids detected using random amplified polymorphic DNA (RAPD)-PCR. Biol Control Theory Appl Pest Manag 3:243–257

    Google Scholar 

  • Ehrlich PR, Ehrlich A (1970) Population, resources, environment: issues on human ecology. W.H. Freeman, San Francisco

    Google Scholar 

  • Eilenberg J, Enkegaard A, Vestergaard S, Jensen B (2000) Biocontrol of pests on plant crops in Denmark: present status and future potential. Biocontrol Sci Tech 10:703–716

    Article  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • Ellsworthip P, Martinez CJL (2001) IPM for Bemisia tabaci; a case study from North America. Crop Prot 20(9):853–869

    Article  Google Scholar 

  • Eto M (1990) Biochemical mechanism of insecticidal activities. In: Haug G, Hoffman H (eds) Chemistry of plant protection, vol 6. Springer, pp 65–107

    Google Scholar 

  • FAO (1967) Year book of forest products. Forest economics branch (Food and Agriculture Organization of the United Nations), Rome, p 156

    Google Scholar 

  • Fareed M, Pathak MK, Bihari V, Kamal R, Srivastava AK, Kesavachandran CN (2013) Adverse respiratory health and hematological alterations among agricultural workers occupationally exposed to organophosphate pesticides: a cross-sectional study in North India. PLoS One 8(7):e69755. https://doi.org/10.1371/journal.pone.0069755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferron P (1978) Biological control of insect pests by entomogenous fungi. Annu Rev Entomol 16:259–263

    Google Scholar 

  • Frazier JL, Chyb S (1995) Use of feeding inhibitors in insect control. In: RF Chapman G d B (ed) Regulatory mechanisms in insect feeding. Chapman and Hall, New York, pp 364–381

    Chapter  Google Scholar 

  • Gahukar RT (2009) Pest management in cotton: strategy and tools of IPM. Int J Agric Sci 5:307–310

    Google Scholar 

  • Galvan TL, Koch RL, Hutchison WD (2005) Toxicity of commonly used insecticides in sweet corn and soybean to multicolored Asian lady beetle (Coleoptera: Coccinellidae). J Econ Entomol 98(3):780–789

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA, Gatehouse AMR (1998) Genetic engineering of plants for insect resistance. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Agriculture and environment series. CRC Press LLC, Boca Raton, pp 211–241

    Google Scholar 

  • Georgis R, Koppenhofer AM, Lacey LA, Belair G, Duncan LW, Grewal PS, Samish M, Tan L, Torr P, Tol RW, Van HM (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38:103–123

    Article  Google Scholar 

  • Gibson RW, Rice AD, Pickett JA, Smith MC, Sawicki RM (1982) The effects of the repellents dodecanoic acid and polygodial on the acquisition of non-, semiand persistent plant viruses by the aphid Myzus persicae. Ann Appl Biol 100:55–59

    Article  CAS  Google Scholar 

  • Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DR, Quiring DJM (1987) Yellow sticky traps for detecting and monitoring greenhouse whitefly (Homoptera: Aleyrodidae) adults on greenhouse tomato crops. J Econ Entomol 80:675–679

    Article  Google Scholar 

  • Glass EH, Thurston HD (1978) Traditional and modern crop protection in perspective. Bioscience 28(2):109–115

    Article  Google Scholar 

  • Gӧktay M, Kismali Ş (1990) DiflubenzuronÕun bӧcekler üzerindeki etkisi. Türkiye Entomoloji Dergisi 14:53–64

    Google Scholar 

  • Grafton-Cardwell EE, Lee JE, Stewart JR, Olsen KD (2006) Role of two insect growth regulators in integrated pest management of citrus scales. J Econ Entomol 99:733–744

    Article  PubMed  CAS  Google Scholar 

  • Green CH, Hall MJR, Fergiani M, Chirico J, Husni M (1993) Attracting adult new world screwworm, Cochliomyia hominivorax, to odour-baited targets in the field. Med Vet Entomol 7:59–65

    Article  PubMed  CAS  Google Scholar 

  • Griffiths DC, Pickett JA (1980) A potential application of aphid alarm pheromones. Entomol Exp Appl 27:199–201

    Article  Google Scholar 

  • Griffiths DC, Pickett JA (1987) Novel chemicals and their formulation for aphid control. In: Proceedings of international symposium Control Release Bioact. Mater. 14th, pp 1041–46

    Google Scholar 

  • Griffiths DC, Maniar SP, Merritt LA, Mudd A, Pickett JA, Pye BJ, Smart LE, Wadhams LJ (1991) Laboratory evaluation of pest management strategies combining antifeedants with insect growth regulator insecticides. Crop Prot 10(2):145–151

    Article  CAS  Google Scholar 

  • Gullan PJ, Cranston PS (2010) The insects: an outline of entomology. Wiley, Chichester, p 528

    Google Scholar 

  • Gullan PJ, Cranston PS (2014) The insects: an outline of entomology. Wiley, Chichester, p 595

    Google Scholar 

  • Hajek AE (2004) Natural enemies: an introduction to biological control. Cambridge University Press, Cambridge, p 378

    Book  Google Scholar 

  • Hardee DD (1982) Mass trapping and trap cropping of the boll weevil, Anthonomus grandis Boheman. In: Kydonieus AF, Beroza M (eds) Insect suppression with controlled release pheromone systems, vol 2. CRC Press, Boca Raton, pp 65–71

    Google Scholar 

  • Harris MO, Foster SP (1995) Behavior and integration. In: Chemical ecology of insects 2. Springer, pp 3–46

    Google Scholar 

  • Harrison RL, Bonning BC (1998) Genetic engineering of biocontrol agents for insects. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect. Agriculture and environment series. CRC Press LLC, Boca Raton, pp 243–280

    Google Scholar 

  • Hart WG (1972) Compensatory releases of Microterys flavus as a biological control agent against brown soft scale. Environ Entomol 1(4):414–419

    Article  Google Scholar 

  • Hart WD, Meyerdirk M, Sanchez W, Rhode R (1978) Development of a trap for the citrus blackfly, Aleurocanthus woglumi Ashby. South West Entomol 3:219–225

    Google Scholar 

  • Hatakoshi M, Nakayama I, Riddiford LM (1988) The induction of an imperfect supernumerary larval molt by juvenile-hormone analogs in Manduca sexta. J Insect Physiol 34:373–378

    Article  CAS  Google Scholar 

  • Heinz KM, Zalom FG (1995) Variation in trichome-based resistance to Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition on tomato. J Econ Entomol 88(5):1494–1502

    Article  Google Scholar 

  • Hermann R, Moskowitz H, Zlotkin E, Hammock BD (1995) Positive cooperativity among insecticidal scorpion toxins. Toxicon 33:1099–1102

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants – to grow or defend. Q Rev Biol 67(3):283–335

    Article  Google Scholar 

  • Higbee BS, Horton DR, Krysan JL (1995) Reduction of egg hatch in pear psylla (Homoptera: Psyllidae) after contact by adults with insect growth regulators. J Econ Entomol 88:1420–1424

    Article  CAS  Google Scholar 

  • Hill CB, Li Y, Hartman GL (2004) Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). J Econ Entomol 97(3):1071–1077

    Article  PubMed  Google Scholar 

  • Hodek I, Ruzicka Z, Sehnal F (1973) Termination of diapause by juvenoids in two species of ladybirds (Coccinellidae). Experientia 29:1146–1147

    Article  CAS  Google Scholar 

  • Hogendorp BK, Cloyd RA, Swiader JM (2006) Effect of nitrogen fertility on reproduction and development of citrus mealybug, Planococcus citri Risso (Homoptera: Pseudococcidae), feeding on two colors of coleus, Solenostemon scutellarioides L. Codd. Environ Entomol 35(2):201–211

    Article  Google Scholar 

  • Hokkanen MT, Pimentel D (1989) New associations in biological control: theory and practice. Can Entomol 121:829–840

    Article  Google Scholar 

  • Hopper KR, Roush RT, Powell W (1993) Management of genetics of biological-control introductions. Annu Rev Entomol 38:27–51

    Article  Google Scholar 

  • Horne P, Page J (2008) Integrated pest management for crops and pastures. Landlinks Press, Collingwood

    Google Scholar 

  • Hoy MA (1996) Novel arthropod biological control agents. In: Persley GJ (ed) Biotechnology and integrated pest management. Biotechnology in agriculture No. 15. CAB International, Wallingford, OX 108 DE, UK., pp 164–185

    Google Scholar 

  • Hoyt SC, Caltagirone LE (1971) The developing programs of integrated control of pests of apples in Washington and peaches in California. Biol Control:395–421

    Google Scholar 

  • Huang T (2005) Nonpesticide methods for controlling diseases and insect pests. In: Ooi, PAC (eds) IPM expert, FAO, Bangkok, pp 62–80

    Google Scholar 

  • Huang X, Renwick JAA (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomol Exp Appl 68:59–69

    Article  Google Scholar 

  • Huang SL, Cheng AH, Chen WS (1999) Cultivation of Muskmelon in Tunnel-shaped Plastic Structure Tainan District Agricultural Improvement Station Technical Bulletin No 92, 28 pp

    Google Scholar 

  • Huffaker CB, Simmonds FJ, Laing JE (1976) The theoretical and empirical basis of biological control. In: Huffaker CB, Messenger PS (eds) Theory and practice of biological control. Academic, New York, pp 41–78

    Chapter  Google Scholar 

  • Hunter DG (1997) Indigenous crop protection in the Pacific Islands. J South Pacific Agric 3(1&2):21–31

    Google Scholar 

  • Hunter DG (1998) Pest and disease management, university extension, University of the South Pacific, Suva, Fiji (course book 380 pp. and reader 570 pp)

    Google Scholar 

  • Hunter DG (2005). Nonpesticide methods for sustainable crop disease management in the Asia-Pacific region: present status, issues and strategies. In: Ooi, PAC (eds) Nonpesticide methods for controlling diseases and insect pests. IPM expert, FAO, Bangkok, pp 24–40

    Google Scholar 

  • Iiango K, Uthamasamy S (1989) Influence of spacing and fertilizer levels on the incidence of bollworm. Appl Agric Res 4:173–178

    Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448

    Article  PubMed  CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1992) Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweet potato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 85:2113–2117

    Article  CAS  Google Scholar 

  • Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL (2012) Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol 160(4):1719–1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javer A, Wynne AD, Borden JH, Judd GJR (1987) Pine oil: an oviposition deterrent for the onion maggot, Delia antique (Meigen) (Diptera: Anthomyiidae). Can Entomol 119:605–609

    Article  CAS  Google Scholar 

  • Jermy T (1971) Biological background and outlook of the antifeedant approach to insect control. Acta Phytopathol Acad Sci Hung 6:253–260

    Google Scholar 

  • Jiang H, Ya H, Hu J, Zhang L, Min J, Yang YH (2008) Advances in application of recombinant insect viruses as biopesticides. Acta Entomol Sin 51:322–327

    Google Scholar 

  • Jones GA, Sieving KE, Jacobson SK (2005) Avian diversity and functional insectivory on North-Central Florida farmlands. Conserv Biol 19:1234–1245

    Article  Google Scholar 

  • Keneth M (1992) The DDT story. The British Crop Protection Council, London

    Google Scholar 

  • Kennedy JS (1978) The concepts of olfactory “arrestment” and “attraction”. Physiol Entomol 3:91–98

    Article  Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GG, Barbour JD (1992) Resistance variation in natural and managed systems. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 13–41. ISBN:0226265536

    Google Scholar 

  • Kennedy GG, Sorenson CF (1985) Role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 78(3):547–551

    Article  Google Scholar 

  • Khaliq A (2005) Pakistan. In: Peter ACO (ed) Non-pesticide methods for controlling diseases and insect pests, Asian Productivity Organization, 1- 2-10 Hirakawacho, Chiyoda-ku, Tokyo

    Google Scholar 

  • Kismali Ş, Erkin E (1984) Juvenil hormon analoglarinin bazi yararli boceklerin gelismesi uzerine etkileri. II. Coccinella septempunctata L. nin larva gelismesi uzerine etkisi. Turkiye Entomoloji Dergisi 8:231–236

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Koçak E, Kilinçer N (1997) Juvenil hormon analogue methopren in pamuk yaprak kurdu (Spodoptera littoralis) Boist. (Lep.: Noctuidae) na etkileri: I. pupa ve yumurta etkiler. Bitki Kor Bult 37:163–172

    Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270

    Article  PubMed  CAS  Google Scholar 

  • Kohnle U, Densborn S, Duhme D, Vité JP (1992) Bark beetle attack on host logs reduced by spraying with repellents. J Appl Entomol 114:83–90

    Article  Google Scholar 

  • Kolodny-Hirsch, D.M., Schwalbe, C.P., 1990. Use of disparlure in the management of the gypsy moth. Behavior-modifying chemicals for insect management. Marcel Dekker, New York, pp. 363–385

    Google Scholar 

  • Koreen R, Teresa C, Richard M, Twyman HQ, Christou P (2009) Calling the tunes on transgenic crops: the case for regulatory harmony. Mol Breed 23:99–112

    Article  Google Scholar 

  • Koyama J, Teruya T, Tanaka K (1984) Eradication of the oriental fruit fly (Diptera: Tephritidae) from the Okinawa islands by a male annihilation method. J Econ Entomol 77:468–472

    Article  Google Scholar 

  • Krischik VA, Landmark AL, Heimpel GE (2007) Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae). Environ Entomol 36(5):1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy PK, Krishnakumar NK (1997) Integrated management in horticultural systems. In: Pest management in horticultural systems. Indian Institute of Horticultural Research, Bangalore, pp 82–97

    Google Scholar 

  • Omkar, Kumar B (2016) Biocontrol of insect pests. In: Omkar (ed) Ecofriendly pest management for food security. Academic (Elsevier), Amsterdam, 25–61 pp

    Google Scholar 

  • Kumar S, Vasuda G, Khan MA (2004) Biological control: a potential weapon in agriculture. Indian Farming:39–44

    Google Scholar 

  • Kunalasiri A, Bukaew S (2000) Growers opinions on the socio-economic aspect of Bt-cotton resistant to bollworm. Biosafety Report on Field Testing on NuCOTN 33B Bt Cotton, pp 93–98

    Google Scholar 

  • Lacey LA, Goettel MS (1995) Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga 40(1):3–27

    Article  Google Scholar 

  • Ladd TL, Klein MG, Tumlinson JH (1981) Phenethyl propionate Ceugenol Cgeraniol (3:7:3) and Japonilure: a highly effective joint lure for Japanese beetles. J Econ Entomol 74:665–667

    Article  Google Scholar 

  • Lal R, Rohilla HR (2007) Insect pests of pulses and their management. Natl J Plant Improv 9:67–81

    Google Scholar 

  • Lanier GN (1990). Principles of attraction-annihilation: mass trapping and other means. In: Behavior modifying chemicals for insect pest management: applications of pheromones and other attractants, pp 25–45

    Google Scholar 

  • Lester EE (2006) Perspective integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag Sci 62:787–789

    Article  CAS  Google Scholar 

  • Lingappa S (2001) Tools for the management of Helicoverpa in cotton. National Seminar on sustainable cotton production to meet the requirement of industry, 3–4 October 2001 at Mumbai

    Google Scholar 

  • Lingren PD, Ridgway RL (1967) Toxicity of five insecticides to several insect predators. J Econ Entomol 60(6):1639–1641

    Article  CAS  Google Scholar 

  • Luckmann WH, Metcalf RL (1994) The pest management concept. In: Metcalf RL, Luckmann WH (eds) Introduction to insect pest management. Wiley, New York, pp 1–34

    Google Scholar 

  • Makaka C (2008) The efficacy of two isolates of Metarhizium anisopliae (Metschin) Sorokin (Deuteromycotina: Hyphomycetes) against the adults of the black maize beetle Heteronychus licas Klug (Coleoptera: Scarabidae) under laboratory conditions. Afr J Agric Res 3:259–265

    Google Scholar 

  • Malhi CS, Kaur A (2006) Evaluating potential of the common myna, Acridotheres tristis, for insect pest management. Integrated Pest Control 48:136–139

    Google Scholar 

  • Martin H (1968) Pesticides manual. British Crop Protection Council, London

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • McClure MS (1977) Resurgence of the scale, Fiorinia externa (Homoptera: Diaspididae), on hemlock following insecticide application. Environ Entomol 6(3):480–484

    Article  CAS  Google Scholar 

  • McNeil J (1975) Juvenile hormone analogs: detrimental effects on the development of an endoparasitoid. Science 189:640–642

    Article  PubMed  CAS  Google Scholar 

  • Meineke EK, Dunn RR, Sexton JO, Frank SD (2013) Urban warming drives insect pest abundance on street trees. PLoS One 8(3):e59687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metcalf RL, Ferguson JE, Lampan R, Andersen JF (1987) Dry cucurbitacin-containing baits for controlling diabroticite beetles (Coleoptera: Chrysomelidae). J Econ Entomol 80:870–875

    Article  Google Scholar 

  • Meyerdirk DE, Oldfield GN (1985) Evaluation of trap colour and height placement for monitoring Circulifer tenellus (Baker) (Homoptera: Cicadellidae). Can Entomol 117:505–511

    Article  Google Scholar 

  • Miller JR (1986) Cull onions as a trap crop for onion maggot. Funded Proposal of USDA CRGO, Washington, DC

    Google Scholar 

  • Miller LK (1995) Genetically engineered insect virus pesticides: present and future. J Invertebr Pathol 65:211–216

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3112

    Article  PubMed  CAS  Google Scholar 

  • Mills NJ, Daane KM (2005) Nonpesticidal alternatives can suppress crop pests. Calif Agric 59(1):23–28

    Article  Google Scholar 

  • Minks AK, Cardé RT (1988) Disruption of pheromone communication in moths: is the natural blend really most efficacious? Entomol Exp Appl 49:25–36

    Article  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Niehuis O (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Takahashi RM (1974) Insect development inhibitors; effects of candidate mosquito control agents on non-target aquatic organism. Environ Entomol 3:631–636

    Article  Google Scholar 

  • Miyamoto J, Hirano M, Takimoto Y, Hatakoshi M (1993) Insect growth regulators for pest control, with emphasis on juvenile hormone analogs: present status and future prospects. ACS symposium series. ACS, Washington, DC 524, pp 144–168

    Google Scholar 

  • Moffit HR, Westigard PH, Mantey KD, Van DeBaan HE (1988) Resistance to diflubenzuron in codling moth (Lepidoptera: Tortricidae). J Econ Entomol 81:1511–1515

    Article  Google Scholar 

  • Mordue-Luntz AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39:903–924

    Article  Google Scholar 

  • Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51(3):487–492

    Article  Google Scholar 

  • Muir P (2002) The history of pesticides use. Oregon State University Press, Corvallis

    Google Scholar 

  • Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Sheshadri V (1988) Abundance of natural enemies of cotton insects under intercropping systems. J Biol Control 2:3–5

    Google Scholar 

  • National Research Council (2010) Advancing the science of climate change. The National Academies Press, Washington, p 526

    Google Scholar 

  • Naved S, Trivedi TP, Singh J, Sardana HR, Dhandapani A, Bhosle BB, Gawas VR (2008) Development and promotion of IPM package in rainfed Bt. and non-Bt. cotton cropping system – a case study-II. Pestic Res J 20:43–47

    Google Scholar 

  • Neale M (2000) The regulation of natural products as crop-protection agents. Pest Manag Sci 56:677–680

    Article  CAS  Google Scholar 

  • Needham J (1956) Science and civilisation in China. II. History of scientific thought. Cambridge University Press, Cambridge

    Google Scholar 

  • Needham J (1986) Science and civilisation in China. VI. I. Botany. Cambridge University Press, Cambridge

    Google Scholar 

  • Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, Elliott J, Fujimori S, Hasegawa T, Heyhoe E, Kyle P (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111(9):3274–3279

    Article  PubMed  CAS  Google Scholar 

  • Nijholt WW, McMullen LH, Safranyik L (1981) Pine oil protects living trees from attack by three bark beetle species, Dendroctonus spp. (Coleoptera: Scolytidae). Can Entomol 113:337–340

    Article  Google Scholar 

  • Nimmo DR, Hamaker TL, Moore JC, Wood RA (1980) Acute and chronic effects of Dimilin on survival and reproduction of Mysidopsis bahia. In: Aquatic toxicology. ASTM International, Philadelphia

    Google Scholar 

  • Nisbet AJ, Woodford JAT, Strang RH, Connolly JD (1993) Systemic antifeedant effects of azadirachtin on the peach potato aphid Myzus persicae. Entomol Exp Appl 68:87–98

    Article  CAS  Google Scholar 

  • Nordlund DA (1981) Semiochemicals: a review of the terminology. In: Nordlund DA, Jones RL, Lewis WJ (eds) Semiochemicals: their role in pest control. Wiley, Chichester, 13–28 pp

    Google Scholar 

  • Norland RL, Mulla MS (1975) Impact of altosid on selected member of an aquatic ecosystem. Environ Entomol 4:145–152

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Othmer K (1996) Encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. The MacMillan Company, New York

    Google Scholar 

  • Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47(1):77–81

    Article  CAS  Google Scholar 

  • Pathak MK, Fareed M, Bihari V, Mathur N, Srivastava AK, Kuddus M, Nair KC (2011) Cholinesterase levels and morbidity in pesticide sprayers in North India. Occup Med 61(7):512–514

    Article  CAS  Google Scholar 

  • Pathak MK, Fareed M, Srivastava AK, Pangtey BS, Bihari V, Kuddus M, Kesavachandran C (2013) Seasonal variations in cholinesterase activity, nerve conduction velocity and lung function among sprayers exposed to mixture of pesticides. Environ Sci Pollut Res 20(10):7296–7300

    Article  CAS  Google Scholar 

  • Pawar AD (2004) Biological control of crop pests and weeds and integrated pest management. Plant Prot Bull 56:1–5

    Google Scholar 

  • Pedigo LP, Rice ME (2014) Entomology and pest management, 6th edn. Waveland Press, Long Grove, 784 pp

    Google Scholar 

  • Penman DR, Chapman RB (1983) Fenvalerate-induced distributional imbalances of 2-spotted spider-mite on bean plants. Entomol Exp Appl 33(1):71–78

    Article  CAS  Google Scholar 

  • Penman DR, Chapman RB (1988) Pesticide-induced mite outbreaks: pyrethroids and spider mites. Exp Appl Acarol 4:265–276

    Article  CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modifications of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88:3324–3328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pickens LG (1995) Baited fly traps—1900 to 1995. IPM Practice 17:1–6

    Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM, Hardie J (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90

    Article  CAS  Google Scholar 

  • Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 7(2):229–252

    Article  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol Exp Appl 66:119–126

    Article  CAS  Google Scholar 

  • Presnail JK, Hoy MA (1992) Stable genetic transformation of a beneficial arthropod, Metaseiulus occidentalis (Acari: Phytoseiidae), by a microinjection technique. Proc Natl Acad Sci U S A 89:7732–7736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prokopy RJ, Lewis WJ (1992) Application of learning to pest management. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman and Hall, New York, pp 308–342

    Google Scholar 

  • Prokopy RJ, Bergweiler C, Galarza L, Schwerin J (1994) Prior experience affects the visual ability of Rhagoletis pomonella flies (Diptera: Tephritidae) to find host fruit. J Insect Behav 7:663–677

    Article  Google Scholar 

  • Puri SN (1998) Non pesticidal management of Helicoverpa armigera on cotton and pigeon-pea. National Center for Integrated Pest Management, Pusa, pp 79–89

    Google Scholar 

  • Purwar JP, Sachan GC (2006) Insect pest management through entomogenous fungi: a review. J Appl Biosci 32:1–26

    Google Scholar 

  • Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy-behavioural control of Heliothis. Aust Cotton Grow 9(1):7–9

    Google Scholar 

  • Rabindra RJ, Ramanujam B (2007) Microbial control of sucking pests using entamopathogenic fungi. J Biol Control 21:21–28

    Google Scholar 

  • Rachel C (1962) Silent spring. Houghton Mifflin Publish, USA

    Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399

    Article  PubMed  CAS  Google Scholar 

  • Rajendran TP, Singh D (2016) Insects and pests. In: Omkar (ed) Ecofriendly pest management for food security. Academic (Elsevier), Amsterdam, 1–24 pp

    Google Scholar 

  • Rana ZA, Ibrar-ul-Haq, Malik NA, Akhtar AS (2007) Effect of trash mulching and Trichogramma chilonis (Ishii) on sugarcane borers infestation. J Agric Res (Lahore) 45:161–164

    Google Scholar 

  • Rao NV (1994) Integrated Management of Helicoverpa armigera Hub. on Major Crops. Research and Advisory Council meeting, Andhra Pradesh Agricultural University, 24 November 1994, Hyderabad, p 30

    Google Scholar 

  • Rao PN (2007) Botanicals and their role in insect pest management. In: Prasad D (ed) Sustainable pest management, pp 451–467

    Google Scholar 

  • Rao PN (2009) Proceeding of international conference on “advances in biosciences: from Darwin to Dolly and beyond” held at Nanded, Maharashtra during February, 12–14

    Google Scholar 

  • Rao PN, Kumar KP (2006) Whitefly management in cotton agro ecosystem with botanicals pesticides: an eco friendly approach. J Ecophysiol Occup Health 6:57–60

    CAS  Google Scholar 

  • Rao PN, Tanweer A (2011) Concepts and components of integrated pest management. Pests and Pathogens: Management Strategies 543

    Google Scholar 

  • Rasnitsyn AP, Quicke DLJ (2002) History of insects. Kluwer Academic Publishers, Dordrecht, 517 pp

    Book  Google Scholar 

  • Raupp MJ, Holmes JJ, Sadof C, Shrewsbury P, Davidson JA (2001) Effects of cover sprays and residual pesticides on scale insects and natural enemies in urban forests. J Arboric 27(4):203–214

    Google Scholar 

  • Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38

    Article  PubMed  CAS  Google Scholar 

  • Rebek EJ, Sadof CS (2003) Effects of pesticide applications on the euonymus scale (Homoptera: Diaspididae) and its parasitoid, Encarsia citrina (Hymenoptera: Aphelinidae). J Econ Entomol 96(2):446–452

    Article  PubMed  CAS  Google Scholar 

  • Rebek EJ, Steven DF, Royer TA, Bogran CE (2012) Alternatives to chemical control of insect pests. In: Soloneski S (ed) Insecticides-basic and other applications. In Tech, Rijeka, pp 171–196

    Google Scholar 

  • Reid BL, Brock VL, Bennett GW (1994) Development, morphogenetic and reproductive effects of four polycyclic nonisoprenoid juvenoids in the German cockroach (Dictyoptera: Blattellidae). J Entomol Sci 29:31–42

    Article  CAS  Google Scholar 

  • Remor AP, Totti CC, Moteira DA, Dutra GP, Heuser VD, Boeira JM (2009) Occupational exposure of farm workers to pesticides: biochemical parameters and evaluation of genotoxicity. Environ Int 35:273–278

    Article  PubMed  CAS  Google Scholar 

  • Renwick JAA (1990) Oviposition stimulants and deterrents. In: Morgan ED, Mandava NB (eds) CRC handbook of natural pesticides, vol 4, insect attractants and repellents. CRC Press, Boca Raton, pp 151–180

    Google Scholar 

  • Riba M, Marti J, Sans A (2003) Influence of Azadirachtin on development of reproduction of Nezara viridula L. (Het., Pentotomidae). J Appl Entomol 127:37–41

    Article  CAS  Google Scholar 

  • Richards OW, Davies RG (1977) Imms’ general textbook of entomology: volume I. Springer, 418 pp

    Google Scholar 

  • Riddiford LM, Truman JW (1978) Biochemistry of insect hormones and insect growth regulators. In: Rockstein M (ed) Biochemistry of insects. Academy, New York, pp 307–357

    Chapter  Google Scholar 

  • Ridgway RL, Silverstein RM, Inscoe MN (1990) Behavior-modifying chemicals for insect pest management: applications of pheromones and other attractants. Dekker, New York

    Google Scholar 

  • Riedl H, Walston AT, Dong K, Soon Brooks DJ (2007) Biological control in pear orchards under seasonal pest management programs with and without organophosphate insecticides. Bull OILB/SROP 30:1–8

    Google Scholar 

  • Robinson GE, Ratnieks FLW (1987) Induction of premature honey bee (Hymenoptera: Apidae) flight by juvenile hormone analogs administered orally or topically. J Econ Entomol 80:784–787

    Article  CAS  Google Scholar 

  • Roy HE, Cottrell TE (2008) Forgotten natural enemies: interactions between coccinellids and insect-parasitic fungi. Eur J Entomol 105:391–398

    Article  Google Scholar 

  • Saba H, Vibhash D, Manisha M, Prashant KS, Farhan H, Tauseef A (2012) Trichoderma-a promising plant growth stimulator and biocontrol agent. Mycosphere 3(4):524–531

    Article  Google Scholar 

  • Sakuma M, Fukami H (1990) Dose/response relations in taxes of nymphs of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae) to their aggregation pheromone. Jpn J Appl Entomol Zool 25:9–16

    Article  Google Scholar 

  • Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Jaglan S, Sharma AK, Malhotra S (2012) Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J Pathogens. https://doi.org/10.1155/2012/126819. Article ID 126819 (10 pages)

  • Satish L (1996) Influence of moisture conservation techniques on Microphomina phaseolina population dry root rot and yield of cluster beans. Indian Phytopathol 49(4):342–349

    Google Scholar 

  • Saxena S, Pandey AK (2001) Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55:395–403

    Article  PubMed  CAS  Google Scholar 

  • Sepulveda-Cano PA, Lopez-Nunez JC, Soto-Giraldo A (2008) Effect of two entomopathogenic nematodes on Cosmopolites sordidus (Coleoptera: Dryophthoridae). Rev Colomb Entomol 34:62–67

    Google Scholar 

  • Shanmugam PS, Balagurunathan R, Sathiah N (2006) Bio-intensive integrated pest management for Bt. cotton. Int J Zool Res 2:116–122

    Article  Google Scholar 

  • Siddall JB (1976) Insect growth regulators and insect control: a critical appraisal. Environ Health Perspect 14:119–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel JP (2001) The mammalian safety of bacillus thuringiensis—based insecticides. J Invertebr Pathol 77:13–21

    Article  PubMed  CAS  Google Scholar 

  • Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric Entomol 7(4):265–276

    Article  Google Scholar 

  • Singh SP (2004) Some success stories in classical biological control of agricultural pests in India. Asia-Pacific Association of Agricultural Research Institutions, Bangkok, p 73

    Google Scholar 

  • Singh K (2014) Biocontrol: an overview. Int J Sci Innov Res 2(1):83–89

    Google Scholar 

  • Smart LE, Blight MM, Pickett JA, Pye BJ (1994) Development of field strategies incorporating semiochemicals for the control of the pea and bean weevil, Sitona lineatus L. Crop Prot 13:127–135

    Article  Google Scholar 

  • Smith CA (1995) Searching for safe methods of flea control. J Am Vet Med Assoc 206:1137–1143

    PubMed  CAS  Google Scholar 

  • Smith RF, Allen WW (1954) Insect control and balance of nature. Sci Am 190:38–42

    Article  Google Scholar 

  • Smith RF, Renold HT (1966) Principles, definitions and scope of integrated pest control. In: Proceedings of FAO symposium on integrated pest control, Rome 1, pp 11–17

    Google Scholar 

  • Smith RF, Mittler TE, Smith CN (1973) History of entomology. Annual Reviews Inc, Palo Alto

    Google Scholar 

  • Sparks TC (2013) Insecticide discovery: an evaluation and analysis. Pestic Biochem Physiol 107:8–17

    Article  PubMed  CAS  Google Scholar 

  • Spencer JL, Hibbard BE, Moeser J, Onstad DW (2009) Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agric For Entomol 11(1):9–27

    Article  Google Scholar 

  • Srivastava KP (2004) A textbook of applied entomology. Methods of insect pest control, vol I. Kalayani Publishers, New Delhi

    Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing of toxin protease. Proc Natl Acad Sci U S A 93:6349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steiner LF, Hart WG, Harris EJ, Cunningham RT, Ohinata K, Kamakahi DC (1970) Eradication of the oriental fruit fly from the Mariana islands by the methods of male annihilation and sterile insect release. J Econ Entomol 63:131–135

    Article  Google Scholar 

  • Suckling DM, Karg G (1998) Pheromones and other semiochemicals. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Agriculture and environment series. CRC Press LLC, 63–99 pp

    Google Scholar 

  • Sukprakarn C, Bhudhasamai K, Chankaewmanee B (1997) Trial on storing of corn seed in airtight storage, biennial report 1996–1997. Division of Entomology and Zoology, Department of Agriculture, pp 91–92

    Google Scholar 

  • Swapna N (1995) Certain studies of insecticide resistance in insects of human significance. Ph.D. thesis, Osmania University, Hyderabad, 146 pp

    Google Scholar 

  • Szczepaniec A, Creary SF, Laskowski KL, Nyrop JP, Raupp MJ (2011) Neonicotinoid insecticide imidacloprid causes outbreaks of spider mites on elm trees in urban landscapes. PLoS One 6(5):e20018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Throne JE, Baker JE, Messina FJ, Kramer KJ, Howard JA (2000) Varietal resistance. In: Subramanyam B, Hagstrum DW (eds) Alternatives to pesticides in stored-product IPM. Kluwer Academic Publishers, London, pp 165–192

    Chapter  Google Scholar 

  • Thurston HD (1992) Sustainable practices for plant disease management in traditional farming systems. Westview Press, Boulder, p 279

    Google Scholar 

  • Treacy MF (1999) Recombinant baculoviruses. In: Hall FR, Menn JJ (eds) Biopesticides use and delivery. Methods in biotechnology No.5. Humana Press Inc., Totowa, 321–340 pp

    Google Scholar 

  • Trematerra P (1989) Survey of pheromone uses in stored-products pest control. Zeitschrift Fur Angewandte Entomologie 76:129–142

    Google Scholar 

  • Trematerra P, Battaini F (1987) Control of Ephestia kuehniella Zeller by masstrapping. J Appl Entomol 104:336–340

    Article  Google Scholar 

  • Tunaz H, Uygun N (2004) Insect growth regulators for insect pest control. Turk J Agric For 28(6):377–387

    CAS  Google Scholar 

  • Unnithan GC, Saxena KN (1990) Diversion of oviposition by Atherigona soccata (Diptera: Muscidae) to nonhost maize with sorghum seedling extract. Environ Entomol 19:1432–1437

    Article  Google Scholar 

  • Ushio SK, Yoshioka K, Nasuku K, Waki K (1982) Eradication of the oriental fruit fly from Amami Islands by male annihilation (Diptera: Tephritidae). Jpn J Appl Entomol Zool 26:1–9

    Article  Google Scholar 

  • Van Driesche RG, Bellows TS (1995) Biological control. Chapman and Hall, New York, p 539

    Google Scholar 

  • van Lenteren JC (2000) A greenhouse without pesticides: fact of fantasy? Crop Prot 19:375–384

    Article  Google Scholar 

  • van Lenteren JC (2005) Early entomology and the discovery of insect parasitoids. Biol Control 32:2–7

    Article  Google Scholar 

  • van Lenteren JC (2008) IOBC Internet Book of Biological Control, Version 5. www.IOBC-Global.org

  • Vincent C, Hallman G, Panneton B, Fleurat-Lessard F (2003) Management of agricultural insects with physical control methods. Annu Rev Entomol 48:261–281

    Article  PubMed  CAS  Google Scholar 

  • Vincent C, Weintraub P, Hallman G (2009) Physical control of insect pests. In: Resh VH, Cardé RT (eds) Encyclopedia of insects, 2nd edn. Academic, San Diego, pp 794–798. ISBN:9780123741448

    Chapter  Google Scholar 

  • Walker TJ (1988) Acoustic traps for agriculturally important insects. Fla Entomol 71:484–492

    Article  Google Scholar 

  • Wall CL (1990) Principles of monitoring. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for pest management: applications of pheromones and other attractants. Marcel Dekker, New York, pp 9–23

    Google Scholar 

  • Wang DN, Wang HL (1995) Control of papaya Ringspot virus by using Screenhouse cultivation in Taiwan. In: Proceedings of international symposium on integrated management of insect-borne virus diseases of tropical fruits, p 26 (Abstract), Taichung

    Google Scholar 

  • Weinzierl RA (1998) Botanical insecticides, soaps, and oils. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Agriculture and environment series. CRC Press LLC. 101–122 pp

    Google Scholar 

  • Wells SA, Immaraju J, Ruggero WS, Nelson R (1993) Align, a new insect growth regulator that shows potential for control of cotton pests. In: Proceedings of Beltwide cotton conference, Memphis, TN 1, pp 43–44

    Google Scholar 

  • Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers CW, Challen MP (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330

    Article  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci 101:4859–4864

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T (2001) One hundred years of Bacillus thuringiensis research and development: discovery to transgenic crops. J Insect Biotechnol Sericology 70(1):1–23

    CAS  Google Scholar 

  • Yang CY, Jung JK, Han KS, Boo KS, Yiem MS (2002) Sex pheromone composition and monitoring of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Naju pear orchards. J Asia Pac Entomol 5:201–207

    Article  Google Scholar 

  • Yano E (2005) Biological control of vegetable pests with natural enemies. In: Nonpesticide methods for controlling diseases and insect pests. In: Ooi, PAC (eds) IPM expert, FAO, Bangkok, Thailand, pp 41–47

    Google Scholar 

  • Yano E (2008) Recent progress in IPM and biological control in Japan. Bull OILB/SROP 32:261–264

    Google Scholar 

  • Zacharia JT (2011) Ecological effects of pesticides, pesticides in the modern world – risks and benefits. In: Dr. Margarita Stoytcheva (ed) ISBN:978-953-307-458-0. InTech. Available from: http://www.intechopen.com/books/pesticides-in-the-modern-world-risks-and-benefits/ecological-effects-ofpesticides

  • Zalucki MP, Adamson D, Furlong MJ (2009) The future of IPM: whither or wither? Aust J Entomol 48(2):85–96

    Article  Google Scholar 

  • Zhang Y, Qu LJ, Wang YZ (2007) Using virus to restore and construct table forest ecosystem for pest insects control. Chin For Sci Technol 6:53–61

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Higher Education, Government of Uttar Pradesh, India, for providing financial assistance in the form of Center of Excellence in Biocontrol of Insect Pests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, B., Omkar (2018). Insect Pest Management. In: Omkar (eds) Pests and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-8687-8_27

Download citation

Publish with us

Policies and ethics