Skip to main content

Human Cytochrome P450 and Personalized Medicine

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

Personalized medicine has become a hot topic ascribed to the development of Human Genome Project. And currently, bioinformatics methodology plays an essential role in personal drug design. Here in this review we mainly focused on the basic introduction of the SNPs of human drug metabolic enzymes and their relationships with personalized medicine. Some common bioinformatics analysis methods and latest progresses and applications in personal drug design have also been discussed. Thus bioinformatics studies on SNPs of human CYP450 genes will contribute to indicate the most possible genes that are associated with human diseases and relevant therapeutic targets, identify and predict the drug efficacy and adverse drug response, investigate individual gene specific properties and then provide personalized and optimal clinic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel F (1959) Moderne probleme der humangenetik. Ergebn Inn Med Kinderheilk 12:52–60

    Article  Google Scholar 

  2. Tanmay SP, Shaun FN, Sanish D, Vishal MS, Nilima AK, Nithya JG (2006) Evaluation of the activity of CYP2C19 in Gujrati and Marwadi subjects living in Mumbasi (Bombay). BMC Clin Pharm 6(8):1–5

    Google Scholar 

  3. Lewis DFV (1998) The CYP2 family: models, mutants and interactions. Xenobiotica 28(77):617–661

    Article  CAS  PubMed  Google Scholar 

  4. Sheweita SA (2000) Drug-metabolizing enzymes: mechanisms and functions. Curr Drug Metab 1(2):107–132

    Article  CAS  PubMed  Google Scholar 

  5. Nebert DW, Russell DW (2002) Clinical importance of the cytochrome P450. Lancet 360(9340):1155–1162

    Article  CAS  PubMed  Google Scholar 

  6. Rettie AE, Tai G (2006) The pharmocogenomics of warfarin closing in on personalized medicine. Mol Interv 6(4):223–227

    Article  CAS  PubMed  Google Scholar 

  7. Yang S, Xu L, Wu HM (2010) Rapid genotyping of SNPs influencing warfarin drug response by SELDI-TOF mass spectrometry. J Mol Diagn 12(2):162–168

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sade´e W, Dai Z (2005) Pharmacogenetics/genomics and personalized medicine. Hum Mol Genet 14(2):207–214

    Article  Google Scholar 

  9. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  CAS  PubMed  Google Scholar 

  10. Ding C, Jin S (2009) High-throughput methods for SNP genotyping. Methods Mol Biol 578:245–254

    Article  CAS  PubMed  Google Scholar 

  11. Matukumalli LK, Grefenstette JJ, Hyten DL, Choi IY, Cregan PB, Van Tassell CP (2006) Application of machine learning in SNP discovery. BMC Bioinf 7:4

    Article  Google Scholar 

  12. Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA (2008) Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res 659(1–2):147–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mooney SD, Krishnan VG, Evani US (2010) Bioinformatic tools for identifying disease gene and SNP candidates. Methods Mol Biol 628:307–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang J, Zou Q, Guo MZ (2010) Mining SNPs from EST sequences using filters and ensemble classifiers. Genet Mol Res 9(2):820–834

    Article  CAS  PubMed  Google Scholar 

  15. Arranz MJ, de Leon J (2007) Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 12(8):707–747

    Article  CAS  PubMed  Google Scholar 

  16. Arranz MJ, Kapur S (2008) Pharmacogenetics in psychiatry: are we ready for widespread clinical use? Schizophr Bull 34(6):1130–1144

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bairoch A, Apweiler R (1999) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res 27(1):49–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nelson DR (2006) Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10

    CAS  PubMed  Google Scholar 

  20. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI biosystems database. Nucleic Acids Res 38:492–496

    Article  Google Scholar 

  21. Sim SC, Ingelman-Sundberg M (2006) The human cytochrome P450 allele nomenclature committee web site: submission criteria, procedures, and objectives. Methods Mol Biol 320:183–191

    CAS  PubMed  Google Scholar 

  22. Thomas J, Milward D, Ouzounis C, Pulman S, Carroll M (2000) Automatic extraction of protein interactions from scientific abstracts. Pac Symp Biocomput 5:541–552

    Google Scholar 

  23. Horn F, Lau AL, Cohen FE (2004) Automated extraction of mutation data from the literature: application of MuteXt to G protein-coupled receptors and nuclear hormone receptors. Bioinformatics 20(4):557–568

    Article  CAS  PubMed  Google Scholar 

  24. Hu ZZ, Narayanaswamy M, Ravikumar KE, Vijay-Shanker K, Wu CH (2005) Literature mining and database annotation of protein phosphorylation using a rule-based system. Bioinformatics 21(11):2759–2765

    Article  CAS  PubMed  Google Scholar 

  25. Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res 20(8):1020–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Economopoulos KP, Sergentanis TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122(2):545–551

    Article  CAS  PubMed  Google Scholar 

  27. Neafsey P, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B (2009) Genetic polymorphism in CYP2E1: population distribution of CYP2E1 activity. J Toxicol Environ Health B Crit Rev 12(5–6):362–388

    Article  CAS  PubMed  Google Scholar 

  28. White PC, Speiser PW (2000) Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 21:245–291

    CAS  PubMed  Google Scholar 

  29. Concolino P, Mello E, Zuppi C, Capoluongo E (2010) Molecular diagnosis of Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin Chem Lab Med 48(8):1057–1062

    Article  CAS  PubMed  Google Scholar 

  30. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2):229–243

    Article  CAS  PubMed  Google Scholar 

  31. Blonk MI, van der Velde N, van den Bemt PM, van Schaik RH, van der Cammen TJ (2010) CYP2D6*4, CYP3A5*3 and ABCB1 3435T polymorphisms and drug-related falls in elderly people. Pharm World Sci 32(1):26–29

    Article  CAS  PubMed  Google Scholar 

  32. Sofi F, Giusti B, Marcucci R, Gori AM, Abbate R, Gensini GF (2010) Cytochrome P450 2C19(*)2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J (Epub ahead of print)

    Google Scholar 

  33. Fleeman N, McLeod C, Bagust A, Beale S, Boland A, Dundar Y, Jorgensen A, Payne K, Pirmohamed M, Pushpakom S, Walley T, de Warren-Penny P, Dickson R (2010) The clinical effectiveness and cost-effectiveness of testing for cytochrome P450 polymorphisms in patients with schizophrenia treated with antipsychotics: a systematic review and economic evaluation. Health Technol Assess 14(3):1–157

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818

    Article  CAS  PubMed  Google Scholar 

  35. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discovery 3(11):935–949

    Article  CAS  Google Scholar 

  36. Schlichting I, Berendze J, Chu K, Stoch AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  37. Wang JF, Chou KC (2010) Molecular modeling of cytochrome P450 and drug metabolism. Curr Drug Metab 11(4):342–346

    Article  CAS  PubMed  Google Scholar 

  38. Wang JF, Zhang CC, Chou KC, Wei DQ (2009) Structure of cytochrome P450s and personalized drug. Curr Med Chem 16(2):232–244

    Article  CAS  PubMed  Google Scholar 

  39. de Graaf C, Vermeulen NPE, Feenstra A (2005) Cytochrome P450 in silico: an integrative modeling approach. J Med Chem 48(8):2725–2755

    Article  PubMed  Google Scholar 

  40. Crivori P, Poggesi I (2006) Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem 41(7):795–808

    Article  CAS  PubMed  Google Scholar 

  41. Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12(23–24):1013–1017

    Article  CAS  PubMed  Google Scholar 

  42. Khan MT (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr Drug Metab 11(4):285–295

    Article  CAS  PubMed  Google Scholar 

  43. Raha K, Peters MB, Wang B, Yu N, Wollacott AM, Westerhoff LM, Merz KM Jr (2007) The role of quantum mechanics in structure-based drug design. Drug Discov Today 12(17–18):725–731

    Article  CAS  PubMed  Google Scholar 

  44. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC (2007) 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun 355(2):513–519. Erratum in: (2007) Biochem Biophys Res Commun 357(1):330. (2009) Biochem Biophys Res Commun 384(3):399

    Google Scholar 

  45. Sano E, Li W, Yuki H, Liu X, Furihata T, Kobayashi K, Chiba K, Neya S, Hoshino T (2009) Mechanism of the decrease in catalytic activity of human cytochrome P450 2C9 polymorphic variants investigated by computational analysis. J Comput Chem 31(15):2746–2758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, Q., Wei, D. (2015). Human Cytochrome P450 and Personalized Medicine. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_20

Download citation

Publish with us

Policies and ethics