Skip to main content

Potentially Harmful Elements in Agricultural Soils

  • Chapter
  • First Online:
PHEs, Environment and Human Health

Abstract

Soil is a very complex and vulnerable system; a living surface soil is a mixture of solid matter, water, air, and biota components. Human activity nowadays involves such high level of environmental interventions which often irreversible damages and destroys the soil. During the past century, as a consequence of industrial, agricultural and urban activities of man, soil and water resources were contaminated with potentially harmful trace elements (metals and metalloids). As a consequence of pollution the fertility of soils, the most important feature of the soil for mankind was changed adversely. Trace element content and status of agricultural soils may influence plant uptake and concentration of the given element in the tissues of food and fodder crops, thus affecting the quality of food and drinking water with potential implications to human health. After demonstrating the sources of potentially harmful trace elements in agroecosystems the characteristics, ecological significance, environmental exposure, behaviour in soil and biological impacts of the seven most commonly occurring potentially harmful trace elements (As, Cd, Cr, Cu, Hg, Pb and Zn) will be presented in this chapter. Focusing on soils and plants, their accumulation is followed up in foods, and their impacts are summarized on human organism. Case studies are presented to demonstrate the presence of potentially harmful trace elements in urban and industrially contaminated soils, their accumulation in plants, and discussing the possibility of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer, New York

    Google Scholar 

  • Akbar KF, Hale WHG, Headley AD, Athar M (2006) Heavy metal contamination of roadside soils of Northern England. Soil Water Res 1:158–163

    Google Scholar 

  • Allard B (1995) Groundwater. In: Salbu B, Steinnes E (eds) Trace elements in natural waters. CRC Press, Boca Raton, pp 151–176

    Google Scholar 

  • Alloway B (ed) (1990) Heavy metals in soils. Blackie/Wiley, Glasgow/London/York

    Google Scholar 

  • Alloway BJ (2004) Contamination of soils in domestic gardens and allotments: a brief overview. Land Contam Reclam 12:179–187

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association & International Fertilizer Industry Association, Brussels/Belgium/Paris, pp 1–58

    Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 11–50

    Google Scholar 

  • Arai Y, Lanzirotti A, Davis J, Sparks D (2003) Arsenic speciation and reactivity in poultry litter. Environ Sci Tech 37:4083–4090

    CAS  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. Hindawi Publishing Corporation, J Bot. Article ID 848614, 6 pp. doi:10.1155/2012/848614. http://www.hindawi.com/journals/jb/2012/848614/

  • Baize D (2008) Cadmium in soils and cereal grains after sewage-sludge application on French soils. A review. Agron Sustain Dev 29:175–184

    Google Scholar 

  • Baker DE (1990) Copper. In: Alloway B (ed) Heavy metals in soils. Blackie/Wiley, Glasgow/London/New York, pp 151–176

    Google Scholar 

  • Baroni F, Boscagli A, DiLella LA, Protano G, Riccobono F (2004) Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J Geochem Explor 81:1–14

    CAS  Google Scholar 

  • Bellows BC (2005) Arsenic in poultry litter: organic regulations. Publication of ATTRA, The National Sustainable Agriculture Information Service, pp 1–12. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=172

  • Bini C, Maleci L, Romanin A (2008) The chromium issue in soils of the leather tannery district in Italy. J Geochem Explor 96:194–202

    CAS  Google Scholar 

  • Biró B, Pacsuta P, Simon L (2007) Sensitive or tolerant adaptation of rhizobium bacteria as a function of the short- or long-term loads of the Zn metal salt. Cereal Res Commun 35:261–264

    Google Scholar 

  • Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 240:235–251

    CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  Google Scholar 

  • Brooks RR (ed) (1998) Plants that hyperaccumulate heavy metals. CAB International, Oxon/New York

    Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (1999a) Canadian soil quality guidelines for the protection of environmental and human health: Cadmium (1999). In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • CCME (Canadian Council of Ministers of the Environment) (1999b) Canadian soil quality guidelines for the protection of environmental and human health: Chromium (total 1997) (VI 1999). In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • CCME (Canadian Council of Ministers of the Environment) (1999c) Canadian soil quality guidelines for the protection of environmental and human health: Copper (1999). In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • CCME (Canadian Council of Ministers of the Environment) (1999d) Canadian soil quality guidelines for the protection of environmental and human health: Mercury (inorganic) (1999). In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • CCME (Canadian Council of Ministers of the Environment) (1999e) Canadian soil quality guidelines for the protection of environmental and human health. Lead 1999. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • CCME (Canadian Council of Ministers of the Environment) (1999f) Canadian soil quality guidelines for the protection of environmental and human health. Zinc 1999. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • CCME (Canadian Council of Ministers of the Environment) (2001) Canadian soil quality guidelines for the protection of environmental and human health: Arsenic (inorganic) (1997), Updated. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. www.ceqg-rcqe.ccme.ca

  • Cervantes C, Campos-Garcia J, Devars S, Gutiérez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    CAS  Google Scholar 

  • Chaney RL (2010) Cadmium and zinc. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester, pp 409–439

    Google Scholar 

  • Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25:847–857

    CAS  Google Scholar 

  • Chesworth W (ed) (2008) Encyclopedia of soil science. Springer, Dordrecht

    Google Scholar 

  • Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture

    Google Scholar 

  • Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:EN:PDF

  • COWI A/S (2003a) Nordic Council of Ministers. Cadmium review. Manuscript, pp 1–24. http://www.who.int/ifcs/documents/forums/forum5/nmr_cadmium.pdf

  • COWI A/S (2003b) Nordic Council of Ministers. Lead review. Manuscript, pp 1–29. http://www.who.int/ifcs/documents/forums/forum5/nmr_lead.pdf

  • Cunningham SC, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead use. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 359–376

    Google Scholar 

  • Cuypers A, Remans T, Weyens N, Colpaert J, Vassilev A, Vangronsveld J (2013) Soil-plant relationships of heavy metals and metalloids. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 161–194

    Google Scholar 

  • Czira G, Simon L, Vincze G, Koncz J, Lakatos G (2013) Effect of chelants on the lead and copper uptake of maize from contaminated soils. Agrokém Talajt 62:373–386 (in Hungarian)

    CAS  Google Scholar 

  • Dániel P, Kovács B, Prokisch J, Győri Z (1997) Heavy metal dispersion detected in soils and plants alongside roads in Hungary. Chem Speciat Bioavailab 9:83–93

    Google Scholar 

  • Davies BE (1990) Lead. In: Alloway B (ed) Heavy metals in soils. Blackie/Wiley, Glasgow/London/New York, pp 177–196

    Google Scholar 

  • Dechamps C, Roosens NH, Hotte C, Meerts P (2005) Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant Soil 273:327–335

    CAS  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity – a review. Plant Soil Environ 53:193–200

    CAS  Google Scholar 

  • Dučić T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Google Scholar 

  • Eckel H, Roth U, Döhler H, Nicholson F, Unvin R (eds) (2005) Assessment and reduction of heavy metal input into agro-ecosystems. Final report of the EU-Concerted Action AROMIS. KTBL, Darmstadt. ISBN 3-7843-2176-3

    Google Scholar 

  • Environment Agency (2002) Contaminants in soil: collation of toxicological data and intake values for humans. Chromium. Environment Agency, Bristol, pp 1–24. http://www.environment-agency.gov.uk/static/documents/Research/chromium_old_approach_2028660.pdf

  • Eriksson J (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops. Swedish Environmental Protection Agency, Stockholm. http://www.naturvardsverket.se/documents/publikationer/620-6246-8.pdf

  • EURAR (European Union Risk Assessment Report) (2008) Copper, copper II sulphate pentahydrate, copper(I)oxide, copper(II)oxide, dicopper chloride trihydroxide. European Copper Institute, Brussels/Belgium. http://echa.europa.eu/copper-voluntary-risk-assessment-reports/-/substance/464/search/+/term

  • European Commission working document on sludge 3rd draft (2000, April 27) DG Environment, Brussels. http://ec.europa.eu/environment/waste/sludge/pdf/sludge_en.pdf

  • Evangelou MWH, Ebel M, Shaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63:996–1004

    CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Technology evaluation report. GWRTAC E series TE-97-01. Ground-Water Remediation Technologies Analysis Center, Pittsburg, pp 1–53. http://www.cluin.org/download/toolkit/metals.pdf

  • Evans G, Evans J, Redman A, Johnson R, Foust N Jr (2005) Unexpected beneficial effects of arsenic on corn roots grown in culture. Environ Chem 2:167–170

    Google Scholar 

  • Garcia R, Millán E (1998) Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 37:1615–1625

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    CAS  Google Scholar 

  • Gonelli C, Renella G (2013) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 313–333

    Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition – a review. Am J Exp Agric 3:374–391

    Google Scholar 

  • Hansen E, Christensen MF, Lassen C, Jeppesen CN, Warming M, Kjølholt J (eds) (2013) Review and survey of cadmium and cadmium compounds. A LOUS review report environmental project no. 1471, 2013. The Danish Environmental Protection Agency, Copenhagen. http://www2.mst.dk/Udgiv/publications/2013/04/978-87-92903-05-1.pdf

  • He ZL, Yang XE, Stoffell PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    CAS  Google Scholar 

  • Hettiarachchi GM, Pierzynski GM (2004) Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ Prog 23:78–93

    CAS  Google Scholar 

  • Hinton J, Veiga M (2001) Mercury contaminated sites: a review of remedial solutions. In: Proceedings of the National Institute for Minamata disease forum 2001, Minamata, Japan, 19–20 Mar 2001, pp 1–13. http://www.facome.uqam.ca/pdf/Minamata_Forum_2001.pdf

  • Hopkins J, Hosford M (2009) Contaminants in soil: updated collation of toxicological data and intake values for humans. Mercury. Environment Agency, Bristol, pp 1–44. http://a0768b4a8a31e106d8b0-50dc802554eb38a24458b98ff72d550b.r19.cf3.rackcdn.com/scho0309bpqn-e-e.pdf

  • Hörcsik Z, Oláh V, Balogh Á, Mészáros I, Simon L, Lakatos G (2006) Effect of chromium (VI) on growth, elemental and photosynthetic pigment composition of Chlorella pyrenoidosa. Acta Biol Szeged 50:19–24

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soil: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Hungarian 6/2009. (IV. 14.) KvVM-EüM-FVM (Ministry of Environment and Water Management), Ministry of Health, Ministry of Agriculture) Joint Decree on the threshold limits and measurement of pollutants necessary to protect the geological medium and groundwater against pollution. http://www.complex.hu/jr/gen/hjegy_doc.cgi?docid=A0900006.KVV

  • Hungarian Agricultural and Rural Development Ministry Decree 36/2006 (V.18.) on the licensing and storage of yield enhancing substances

    Google Scholar 

  • Hungarian Government Decree 40/2008 (II.26.) about the modification of Hungarian Government Decree 50/2001. (IV.3.) about the rules of agricultural utilization and treatment of sewage and sewage sludge

    Google Scholar 

  • Hungarian Government Decree 50/2001 (IV.3.) on rules for wastewater and sewage sludge agricultural utilization and treatment. http://www.iwawaterwiki.org/xwiki/bin/view/Articles/Hungary

  • Iyaka YA (2012) Chromium in soils: a review of its distribution and impacts. Int J Mater Sci Chem 1:1–4. http://www.wrpjournals.com/IJMSC

  • IZA (International Zinc Association) (1997) Zinc in the environment – an introduction, 2nd edn. International Zinc Association, Brussels, pp 1–20. http://www.zinc.org/general/Zinc_in_the_Environment.pdf

  • Jennings AA (2013) Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. J Environ Manage 118:72–95

    CAS  Google Scholar 

  • Juste C, Mench M (1992) Long-term application of sewage sludge and its effects on metal uptake by crops. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton/Ann Arbor/London/Tokyo, pp 159–193

    Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace elements – an environmental issue. Geoderma 122:143–149

    CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press LLC, Boca Raton/London/New York/Washington, DC

    Google Scholar 

  • Kacálková L, Tlustoš P, Száková J (2009) Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil Environ 55:295–304

    Google Scholar 

  • Kádár I (2012) Environmental effects of the main microelement contaminants. Hungarian Academy of Sciences, Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Budapest (ISBN 978-963-89041-5-7, book in Hungarian)

    Google Scholar 

  • Kádár I, Németh T (2011) Leaching of microelement contaminants: a long-term field study. Agrok Talajt Suppl 60:219–228

    Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48

    CAS  Google Scholar 

  • Keresztúri P, Lakatos G, Mészáros I, Simon L, Paksi V (2002) Extensive phytoextraction of chromium by spontaneously formatted vegetation in sewage sludge settling pond system of a Hungarian leather factory. In: Anke M, Müller R, Schäfer U, Stoeppler M (eds) Agricultural, biological, environmental, nutritional and medical importance of macro, trace and ultra trace elements. 21st workshop, conference proceedings, Friedrich Schiller University, Jena, Germany, 18–19 Oct 2002. Schubert-Verlag, Leipzig, pp 360–363

    Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    CAS  Google Scholar 

  • Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger J-C (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151

    Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Google Scholar 

  • Králová L, Száková J, Kubík Š, Tlustoš P, Balík J (2010) The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sediment Contam 19:617–634

    Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148:189–199

    CAS  Google Scholar 

  • Landrot G, Tappero R, Webb SM, Sparks DL (2012) Arsenic and chromium speciation in an urban contaminated soil. Chemosphere 88:1196–1201

    CAS  Google Scholar 

  • Lasat MM, Kochian LV (2000) Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 159–169

    Google Scholar 

  • Li X, Poon C-s, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368

    CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2010) Root responses to cadmium in the rhizosphere: a review. J Exp Bot, 17 pp. doi:10.1093/jxb/erq281. http://jxb.oxfordjournals.org/content/early/2010/09/19/jxb.erq281.full.pdf

  • Macnicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129

    CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    CAS  Google Scholar 

  • Markus J, McBratney AB (2001) A review of the contamination of soil with lead. II. Spatial distribution and risk assessment of soil lead. Environ Int 27:399–411

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martin TA, Ruby MV (2004) Review of in situ remediation technologies for lead, zinc, and cadmium in soil. Remediat J 14:35–53

    Google Scholar 

  • Martin HW, Young TR, Kaplan DI, Simon L, Adriano DC (1996) Evaluation of three herbaceous index plant species for bioavailability of soil cadmium, chromium, nickel and vanadium. Plant Soil 182:199–207

    CAS  Google Scholar 

  • Martin I, Morgan H, Waterfall E (2009) Soil guideline values for cadmium in soil. Environment Agency, Bristol. Science report SC050021/Cadmium SGV. http://www.environment-agency.gov.uk/static/documents/Research/SCHO0709BQRO-e-e.pdf

  • Matschullat J (2011) Arsenic in the environment, toxicology and remediation. In: Deschamps E, Matschullat J (eds) Arsenic natural and anthropogenic. Taylor & Francis, London, pp 3–26

    Google Scholar 

  • McBride MB (2003) Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks? Adv Environ Res 8:5–19

    CAS  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Oxon/New York, pp 261–287

    Google Scholar 

  • McGrath SP, Smith S (1990) Chromium and nickel. In: Alloway B (ed) Heavy metals in soils. Blackie/Wiley, Glasgow/London/New York, pp 125–150

    Google Scholar 

  • McGrath SP, Zhao F-J, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients – food safety issues. Field Crop Res 60:143–163

    Google Scholar 

  • Mei B, Puryear DJ, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247:223–231

    CAS  Google Scholar 

  • Merrington G, Oliver I, Smernik RJ, McLaughlin MJ (2003) The influence of sewage sludge properties on sludge-borne metal availability. Adv Environ Res 8:21–36

    CAS  Google Scholar 

  • Mertens J, Smolders E (2013) Zinc. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 465–493

    Google Scholar 

  • Mirsal IA (2008) Soil pollution: origin, monitoring & remediation. Springer, Berlin/Heidelberg, pp 58–60

    Google Scholar 

  • Modlingerová V, Száková J, Sysalová J, Tlustoš P (2012) The effect of intensive traffic on soil and vegetation risk element contents as affected by the distance from a highway. Plant Soil Environ 58:379–384

    Google Scholar 

  • Morgan H, De Búrca R, Martin J, Jefries J (2009) Soil guideline values for mercury in soil. Environment Agency, Bristol, pp 1–11. http://www.environment-agency.gov.uk/static/documents/Research/SCHO0309BPQG-e-e.pdf

  • Mukherjee AB, Zevenhoven R, Brodersen J, Hylander LD, Bhattacharya P (2004) Mercury in waste in the European Union: sources, disposal methods and risks. Resour Conserv Recycl 42:155–182

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Neugschwandtner R, Tlustoš P, Komárek M, Száková J, Jakoubková L (2012) Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period. Int J Phytoremediation 14:754–771

    CAS  Google Scholar 

  • Nicholson F, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2006) Quantifying heavy metal inputs to agricultural soils in England and Wales. Water Environ J 20:87–95

    CAS  Google Scholar 

  • Nicholson F, Rollett A, Chambers B (2010) The Defra “Agricultural soil heavy metal inventory” for 2008. Report for Defra project SP0569. Gleadthorpe, Meden Vale, Mansfield, Notts, UK: ADAS UK Ltd.

    Google Scholar 

  • Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability – the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113

    CAS  Google Scholar 

  • Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390:53–57

    CAS  Google Scholar 

  • O’Neill P (1990) Arsenic. In: Alloway B (ed) Heavy metals in soils. Blackie/Wiley, Glasgow/London/New York, pp 83–99

    Google Scholar 

  • Oorts K (2013) Copper. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 367–394

    Google Scholar 

  • Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am J Sci 304:67–101

    CAS  Google Scholar 

  • Paasivirta J (1991) Chemical ecotoxicology. Lewis Publishers, Chelsea, pp 3–4, 14–15

    Google Scholar 

  • Pais I, Jones JB Jr (1997) The handbook of trace elements. St. Lucie Press, Boca Raton

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52:1–18

    CAS  Google Scholar 

  • Pulford ID, Watson C (2002) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 1032:1–12

    Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into food chain (review). Plant Soil Environ 51:1–11

    Google Scholar 

  • Reeves PG, Chaney RL (2008) Bioavailability as an issue in risk assessment and management of food cadmium: a review. Sci Total Environ 398:13–19. doi:10.1016/j.scitotenv.2008.03.009

    CAS  Google Scholar 

  • Reimann C, Matschullat J, Birke M, Salminen R (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24:1147–1167

    CAS  Google Scholar 

  • Reimann C, Flem B, Fabian K, Birke K, Ladenberger A, Négrel P, Demetriades A, Hoogewerff J et al (2012) Lead and lead isotopes in agricultural soils of Europe – the continental perspective. Appl Geochem 27:532–542

    CAS  Google Scholar 

  • Romić M, Romić D, Ondrašek G (2004) Heavy metals accumulation in topsoils from the wine-growing regions. Part 2. Relationships between soil properties and extractable copper contents. Agric Conspec Sci 69:35–41

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  Google Scholar 

  • Sarkar D, Datta R (2006) Arsenic concentration and bioavailability in soils as a function of soil properties: a Florida case study. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biochemistry, biotechnology, and bioremediation. CRC Press/Taylor & Francis, Boca Raton/London/New York, pp 77–93

    Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Ann Rev Environ Resour 34:43–63

    Google Scholar 

  • Senesi GS, Baidassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    CAS  Google Scholar 

  • Simon L (1998) Cadmium accumulation and distribution in sunflower plant. J Plant Nutr 21:341–352

    CAS  Google Scholar 

  • Simon L (ed) (1999) Soil pollution, soil contamination. Környezetgazdálkodási Intézet, Budapest (ISBN 963 602 740 4, book in Hungarian)

    Google Scholar 

  • Simon L (2001a) Heavy metals, sodium and sulphur in urban topsoils and in the indicator plant chicory (Cichorium intybus L.). Acta Agronom Hung 49:1–13

    CAS  Google Scholar 

  • Simon L (2001b) Effects of natural zeolite and bentonite on the phytoavailability of heavy metals in chicory. In: Iskandar IK (ed) Environmental restoration of metals contaminated soil. Lewis Publishers, Boca Raton, pp 261–271

    Google Scholar 

  • Simon L (2005) Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environ Geochem Health 27:289–300

    CAS  Google Scholar 

  • Simon L, Barna S (2010) Toxic elements and pesticide residues in soil and groundwater of conventionally and organically cultivated plantations located in Northeast Hungary. In: Tóth C (ed) Complex agronomic and bioanalytical testing the biological basis for organic farming in case of plant cultivars representing the Észak-Alföld (Northern Great Plain) region (Hungary). Conference proceedings, 23 Nov 2010, Nyíregyháza, Hungary. Bessenyei Book Publisher, Nyíregyháza, pp 100–124 (ISBN 978-615-5097-11-9) (in Hungarian)

    Google Scholar 

  • Simon L, Wenzel W (2003) Accumulation of nickel and chromium in Thlaspi goesingense Hal. In: Pais I (ed) Proceedings of the 10th international trace element symposium, Budapest, July 2002. Szt. István University, Budapest, pp 221–240

    Google Scholar 

  • Simon L, Martin HW, Adriano DC (1996) Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water Air Soil Pollut 91:351–362

    CAS  Google Scholar 

  • Simon L, Prokisch J, Kovács B, Győri Z (1998) Phytoextraction of heavy metals from a galvanic mud contaminated soil. In: Filep G (ed) Soil pollution. International seminar (TEMPUS JEP 9240), Debrecen, Hungary, 1997. Agricultural University of Debrecen, Debrecen, pp 274–286

    Google Scholar 

  • Simon L, Prokisch J, Győri Z (2000a) Effect of sewage sludge compost on the heavy metal accumulation in maize. Agrokém Talajt 49:247–255 (in Hungarian)

    Google Scholar 

  • Simon L, Szegvári I, Prokisch J (2000b) Study of the phytoextraction of chromium from contaminated soils. In: Pais I (ed) Proceedings of the 9th international trace element symposium, Budapest, Sept 2000. Szt. István University Faculty of Food Science, Budapest, pp 239–255

    Google Scholar 

  • Simon L, Szegvári I, Prokisch J (2001) Enhancement of chromium phytoextraction capacity in fodder radish with picolinic acid. Environ Geochem Health 23:313–316

    CAS  Google Scholar 

  • Simon L, Szegvári I, Csillag J (2003) Impact of picolinic acid on the chromium accumulation in fodder radish and komatsuna. Plant Soil 254:337–348

    CAS  Google Scholar 

  • Simon L, Tamás J, Kovács E, Kovács B, Biró B (2006) Stabilisation of metals in mine spoil with amendments and growth of red fescue in symbiosis with mycorrhizal fungi. Plant Soil Environ 52:385–391

    CAS  Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156

    CAS  Google Scholar 

  • Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ Health 14:177–183

    CAS  Google Scholar 

  • Smolders E, Mertens J (2013) Cadmium. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 283–311

    Google Scholar 

  • Steinnes E (1990) Mercury. In: Alloway B (ed) Heavy metals in soils. Blackie/Wiley, Glasgow/London/New York, pp 222–236

    Google Scholar 

  • Steinnes E (2013a) Mercury. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 411–428

    Google Scholar 

  • Steinnes E (2013b) Lead. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 395–395

    Google Scholar 

  • Stollenwerk KG, Colman JA (2003) Natural remediation potential of arsenic-contaminated ground water. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water. Geochemistry and occurrence. Kluwer Academic Publishers, New York/Boston/Dordrecht/London/Moscow, pp 351–380

    Google Scholar 

  • Su C, Ludwig RD (2005) Treatment of hexavalent chromium in chromite ore processing residue solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environ Sci Tech 39:6208–6216

    CAS  Google Scholar 

  • Száková J, Tlustoš P, Goessler W, Pokorný T, Findenig S, Balík J (2011) The effect of soil contamination level and plant origin on contents of arsenic, cadmium, zinc, and arsenic compounds in Mentha aquatica L. Arch Environ Protect 37:109–121

    Google Scholar 

  • Tang Y-T, Deng T-H-B, Wu Q-H, Wang S-Z, Qui R-L, Wei Z-B, Guo X-F, Wu Q-T, Lei M, Chen T-B, Echevarria G, Sterckeman T, Simonnot MO, Morel JL (2012) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Hindawi Publishing Corporation. Int J Chem Eng. Article ID 939161, 31 pp. doi:10.1155/2011/939161. http://www.hindawi.com/journals/ijce/2011/939161/

  • Tlustoš P, Goessler W, Száková J, Balík J (2002) Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Appl Organomet Chem 16:216–220

    Google Scholar 

  • Tsadilas CD (2011) Heavy metals forms in biosolids, soils and biosolid-amended soils. In: Selim HM (ed) Dynamics and bioavailability of heavy metals in the rootzone. CRC Press/Taylor & Francis, Boca Raton/London/New York, pp 271–291

    Google Scholar 

  • UNEP (United Nations Environment Programme) (2013) Environmental risks and challenges of anthropogenic metals flows and cycles. In: van der Voet E, Salminen R, Eckelman M, Mudd G, Norgate T, Hischier R (eds) A report of the working group on the global metal flows to the international resource panel (ISBN: 978-92-807-3266-5). http://www.unep.org/resourcepanel/Portals/24102/PDFs/Environmental_Challenges%20Metals-Full_Report_150dpi.pdf

  • UNEP (United Nations Environment Programme), Chemicals Branch, DTIE (2010) Final review of scientific information on cadmium. Manuscript, pp 1–201. http://www.unep.org/hazardoussubstances/Portals/9/Lead_Cadmium/docs/Interim_reviews/UNEP_GC26_INF_11_Add_2_Final_UNEP_Cadmium_review_and_apppendix_Dec_2010.pdf

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5:5. http://www.thericejournal.com/content/5/1/5

  • US EPA (United States Environmental Protection Agency) (2000) In situ treatment of soil and groundwater contaminated with chromium. Technical resource guide. EPA/625/R-00/005. Center for Environmental Research Information National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, pp 1–84. http://nepis.epa.gov/Adobe/PDF/30004GUQ.pdf

  • Vodyanitskii YN (2009) Chromium and arsenic in contaminated soils. Eurasian Soil Sci 42:507–515

    Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soil from China. Microchem J 94:99–107

    CAS  Google Scholar 

  • Wenzel WW (2013) Arsenic. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 241–282

    Google Scholar 

  • Wenzel WW, Oburger E, Puschenreiter M, Santner J (2011) Trace element biogeochemistry in the rhizosphere. In: Selim HM (ed) Dynamics and bioavailability of heavy metals in the rootzone. CRC Press/Taylor & Francis, Boca Raton/London/New York, pp 147–181

    Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    CAS  Google Scholar 

  • WHO (World Health Organization) (2003) Zinc in drinking-water. Background document for development of WHO guidelines for drinking-water quality (WHO/SDE/WSH/03.04/17). World Health Organization, Geneva, pp 1–10. http://www.who.int/water_sanitation_health/dwq/chemicals/zinc.pdf

  • WHO (World Health Organization) (2008) Guidelines for drinking-water quality. Third edition incorporating the first and second addenda, vol 1. World Health Organization, Geneva, pp 1–515. ISBN 978 92 4 154761 1 (Web version). http://www.who.int/water_sanitation_health/dwq/fulltext.pdf

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network. ISRN Ecology. Article ID 402647, 20 pages. doi:10.5402/2011/402647. http://www.hindawi.com/isrn/ecology/2011/402647/

  • Yaron B, Calvet R, Prost R (1996) Soil pollution. Processes and dynamics. Springer, Berlin/Heidelberg, pp 25–53

    Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    CAS  Google Scholar 

  • Zayed A, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    CAS  Google Scholar 

  • Zayed A, Lytle CM, Jin-Hong Q, Terry N, Qian JH (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    CAS  Google Scholar 

  • Zhao F, Ma J, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    CAS  Google Scholar 

Download references

Acknowledgements

Authors of the Sect. 11 thank for financial support of the GA ČR project P503/12/0682 and TA ČR project TA01020366.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Simon or Daniela Pavlíková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simon, L. (2014). Potentially Harmful Elements in Agricultural Soils. In: Bini, C., Bech, J. (eds) PHEs, Environment and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8965-3_3

Download citation

Publish with us

Policies and ethics