Skip to main content

Biomechanical Analysis of Fish Swimming Trace Fossils (Undichna): Preservation and Mode of Locomotion

  • Chapter
  • First Online:
Experimental Approaches to Understanding Fossil Organisms

Part of the book series: Topics in Geobiology ((TGBI,volume 41))

Abstract

This chapter includes a morphological analysis of sinusoidal swimming trails of the ichnogenus Undichna and inferences on likely producers, mode of swimming, and preservation. A total of 166 Undichna specimens were measured, including selected examples from the literature and unpublished material from different basins of Argentina. These specimens belong to seven ichnospecies, including U. bina, U. britannica, U. consulca, U. insolentia, U. quina, U. simplicitas, and U. unisulca. The morphology of these ichnospecies is used in conjunction with that of the presumed producer to infer the mode of swimming of the fish. Most Undichna ichnospecies are interpreted as produced by a fish swimming with subcarangiform locomotion. U. insolentia, U. bina, and some specimens of U. britannica are interpreted as reflecting anguilliform locomotion. The essential measurements used in this analysis are wavelength and wave amplitude. Maximum wavelength (in most cases interpreted as the trail produced by the caudal fin) is used to infer the length of the producer for each specimen by comparison with experiments using extant fishes from the literature. Estimated length of fish producing Undichna is in the range 24–800 mm, but most values are less than 250 mm. By estimating the Reynolds number (Re) for each specimen, it is inferred that a fish larger than 650 mm will produce a flow disturbance and bottom sediment suspension that will preclude the preservation of trails recognizable as Undichna. Larger fish may leave identifiable Undichna provided that the sediment underwent early cementation or the fish was swimming at a speed lower than maximum sustained speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adnet S, Balbino AC, Antunes MT et al (2010) New fossil teeth of the white shark (Carcharodon carcharias) from the Early Pliocene of Spain. Implication for its paleoecology in the Mediterranean. Neues Jahrb Geol P-A 256(1):7–16

    Google Scholar 

  • Agassiz L (1833) Recherches sur les poissons fossiles vol I (Atlas). Petitpierre, Neuchatel. doi:10.5962/bhl.title.4275

    Book  Google Scholar 

  • Anderson AM (1970) An analysis of supposed fish trails from interglacial sediments in the Dwyka Series, near Vryheid, Natal. In: Second Gondwana symposium, Pretoria, 1970. IUGS, pp 637–647

    Google Scholar 

  • Anderson AM (1976) Fish trails from the Early Permian of South Africa. Palaeontol 19:397–409

    Google Scholar 

  • Anderson EJ, McGillis WR, Grosenbaugh MA (2001) The boundary layer of swimming fish. J Exp Biol 204 (1):81–102

    Google Scholar 

  • Apesteguía S, Agnolin FL, Claeson K (2007) Review of Cretaceous dipnoans from Argentina (Sarcopterygii: Dipnoi) with descriptions of new species. Rev Mus Arg Cs Nat 9 (1):27–40

    Google Scholar 

  • Archer AW, Maples CG (1984) Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. J Paleontol 58(2):448–466

    Google Scholar 

  • Armenteros I (2010) Diagenesis of carbonates in continental settings. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in continental settings: geochemistry, diagenesis and applications, Developments in sedimentology, vol 62. Elsevier, pp 61–151. doi:http://dx.doi.org/10.1016/S0070-4571(09)06202-5

  • Bainbridge R (1958) The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J Exp Biol 35(1):109–133

    Google Scholar 

  • Bathurst RGC (1972) Carbonate sediments and their diagenesis, vol 12. Developments in sedimentology. Elsevier, Amsterdam

    Google Scholar 

  • Benner JS, Ridge JC, Taft NK (2008) Late Pleistocene freshwater fish (Cottidae) trackways from New England (USA) glacial lakes and a reinterpretation of the ichnogenus Broomichnium Kuhn. Palaeogeogr Palaeocl 260 (3–4):375–388

    Article  Google Scholar 

  • Benner JS, Ridge JC, Knecht RJ (2009) Timing of post-glacial reinhabitation and ecological development of two New England, USA, drainages based on trace fossil evidence. Palaeogeogr Palaeocl 272(3–4):212–231

    Article  Google Scholar 

  • Blevins E, Lauder GV (2013) Swimming near the substrate: a simple robotic model of stingray locomotion. Bioinspir Biomim 8(1):016005

    Article  Google Scholar 

  • Bordy EM, Linkermann S, Prevec R (2011) Palaeoecological aspects of some invertebrate trace fossils from the mid- to Upper Permian Middleton Formation (Adelaide Subgroup, Beaufort Group, Karoo Supergroup), Eastern Cape, South Africa. J Afr Earth Sci 61(3):238–244

    Article  Google Scholar 

  • Breder CM (1926) The locomotion of fishes. Zoologica-N Y 4(5):159–297

    Google Scholar 

  • Buatois LA, Mángano MG (1994) Pistas de peces en el Carbonífero de la Cuenca Paganzo (Argentina): su significado estratigrafico y paleoambiental. Ameghiniana 31(1):33–40

    Google Scholar 

  • Buatois LA, Mángano MG (2003) Caracterización icnológica y paleoambiental de la localidad tipo de Orchesteropus atavus Frenguelli, Huerta de Huachi, provincia de San Juan, vol 40, issue 1. Ameghiniana, Argentina. pp 53–70

    Google Scholar 

  • Buatois LA, Mángano MG, Maples CG et al (1998) Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: the Tonganoxie Sandstone, Buildex Quarry, eastern Kansas. J Paleontol 71:152–180

    Google Scholar 

  • Cardonatto MC, Melchor RN (1998) Biomechanical analysis of fish trace fossils (Undichna): implications for taphonomy. In: VII Congreso Argentino de Paleontología y Bioestratigrafía, Resúmenes, Bahía Blanca, 1998. Universidad Nacional del Sur, p 106

    Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. W. H. Freeman and Company, New York

    Google Scholar 

  • Cione AL, Gouiric-Cavalli S, Mennucci JA et al (2010) First vertebrate body remains from the Permian of Argentina (Elasmobranchii and Actinopterygii). P Geologist Assoc 121(3):301–312

    Article  Google Scholar 

  • Churcher CS, De Iuliis G, Kleindienst MR (2006) A new genus for the Dipnoan species Ceratodus tuberculatus Tabaste, 1963. Geodiversitas 28(4):635–647

    Google Scholar 

  • Díaz Saravia P (2001) Upper Carboniferous fish micro-remains from western Argentina. Rev Esp Micropaleont 33:123–134

    Google Scholar 

  • Fillmore DL, Lucas SG, Simpson EL (2011) The fish swimming trace Undichna from the Mississippian Mauch Chunk Formation, eastern Pennsylvania. Ichnos 18(1):27–34

    Article  Google Scholar 

  • Fliri F, Bortenschlager S, Felber H et al (1970) Der Bänderton von Baumkirchen (Inntal, Tirol) eine neue Schlüsselstelle zur Kenntnis der Würmvereisung der Alpen. Z Gletsch Glazialgeol 6:5–35

    Google Scholar 

  • Fliri F, Hilscher H, Markgraf V (1971) Weitere Untersuchungen zur Chronologie der alpinen Vereisung (Bänderton von Baumkirchen, Inntal, Nordtirol). Z Gletsch Glazialgeol 7(1–2):5–24

    Google Scholar 

  • Gibert JMd (2001) Undichna gosiutensis isp. nov.: a new fish trace fossil from the Jurassic of Utah. Ichnos 8(1):15–22

    Article  Google Scholar 

  • Gibert JMd, Buatois LA, Fregenal-Martínez MA et al (1999) The fish trace fossil Undichna from the Cretaceous of Spain. Palaeontol 42(3):409–427

    Article  Google Scholar 

  • Grande L (1984) Paleontology of the Green River Formation, with a review of the fish fauna. Geol Surv Wyo Bull 63:1–333

    Google Scholar 

  • Haubold H, Buta RJ, Rindsberg AK et al (2005) Atlas of Union Chapel Mine vertebrate trackways and swimming traces. In: Buta RJ, Rindsberg AK, Kopaska-Merkel DC (eds) Pennsylvanian footprints in the Black Warrior basin of Alabama, Alabama Paleontological Society Monograph, vol 1. pp 207–276

    Google Scholar 

  • Higgs R (1988) Fish trails from the Upper Carboniferous of south-west England. Palaeontology 31:255–272

    Google Scholar 

  • Kuhn O (1958) Die Fährten der vorzeitlichen Amphibien und Reptilien. Bamberg, Meisenbach

    Google Scholar 

  • Lindsey CC (1978) Form function and locomotory habits in fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol VII. locomotion. Academic Press, New York, pp 1–100

    Google Scholar 

  • Loewen MA, Gibert JMd (1999) The first occurrence of Cenozoic fish trails (Undichna) from Eocene fossil lake, Wyoming. J Vertebr Paleontol 19(SUPPL. 3):59A

    Google Scholar 

  • López-Arbarello A (2004) The record of Mesozoic fishes from Gondwana (excluding India and Madagascar). In: Arratia G, Tintori A (eds) Mesozoic fishes 3– systematics, paleoenvironments and biodiversity. Verlag Dr. Friedich Pfeil, München, Germany, pp 597–624

    Google Scholar 

  • López-Arbarello A, Rogers R, Puerta P (2006) Freshwater actinopterygians of the Los Rastros Formation (Triassic), Bermejo Basin, Argentina. Foss Rec 9(2):238–258. doi:10.1002/mmng.200600011

    Article  Google Scholar 

  • López-Arbarello A, Rauhut OWM, Cerdeño E (2010) The Triassic fish faunas of the Cuyana Basin, western Argentina. Palaeontol 53(2):249–276. doi:10.1111/j.1475–4983.2010.00931.x

    Article  Google Scholar 

  • Lu TQ, Wang ZL, Yang XY et al (2012) First record of Lower Triassic Undichna spp. fish swimming traces from Emei, Sichuan Province, China. Chinese Sci Bull 57(11):1320–1324

    Article  Google Scholar 

  • Lu ZS, Chen B (1998) Discovery of Late Triassic fish trails (Undichna) in Hengshan County, Shaanxi, China. Acta Palaeontol Sin 37(1):76–84

    Google Scholar 

  • Lu ZS, Hao ZK, Chen B et al (2003) New evidences of Late Triassic fish swimming traces in Hengsahn County, Shaanxi Province, China. Acta Palaeontol Sin 42(2):266–276

    Google Scholar 

  • Lu Z, Hou J, Chen B et al (2004) Genetic interpretation of fish swimming trails and calculation of fish-body length in Late Triassic Hengshan, Shaanxi Province, China. Sci China Ser D 47(3):272–279

    Article  Google Scholar 

  • Maisey JG (1987) Cranial anatomy of the Lower Jurassic shark Hybodus reticulatus (Chondrichthyes: Elasmobranchii), with comments on hybodontid systematics. Am Mus Novit 2878:1–39

    Google Scholar 

  • Martin AJ, Pyenson ND (2005) Behavioral significance of vertebrate trace fossils from the Union Chapel site. In: Buta RJ, Rindsberg AK, Kopaska-Merkel DC (eds) Pennsylvanian footprints in the Black Warrior basin of Alabama, Alabama Paleontological Society monograph, vol 1., pp 59–73

    Google Scholar 

  • Martin AJ, Vazquez-Prokopec GM, Page M (2010) First known feeding trace of the Eocene bottom-dwelling fish Notogoneus osculus and its paleontological significance. PLoS ONE 5 (5):e10420. doi:10.1371/journal.pone.0010420

    Article  Google Scholar 

  • Melchor RN (2004) Trace fossil distribution in lacustrine deltas: examples from the Triassic rift lakes of the Ischigualasto – Villa Unión basin, Argentina. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society Special Publication, vol 228. Geological Society, London, pp 333–352

    Google Scholar 

  • Melchor RN, Cardonatto MC Pistas de peces (Undichna) (1998) Rango estratigráfico, paleoambientes y mecanismos de propulsión del productor. In: Tercera Reunión Argentina de Icnología and Primera Reunión de Icnología del Mercosur, Mar del Plata, 1998, pp 20–21

    Google Scholar 

  • Melchor RN, Bellosi E, Genise JF (2003) Invertebrate and vertebrate trace fossils from a Triassic lacustrine delta: the Los Rastros Formation, Ischigualasto Provincial Park, San Juan, Argentina. In: Buatois LA, Mángano MG (eds) Icnología: Hacia una convergencia entre geología y biología, vol 9. Publicación Especial. Asociación Paleontológica Argentina, Buenos Aires, pp 17–33

    Google Scholar 

  • Minter NJ, Braddy SJ (2006) The fish and amphibian swimming traces Undichna and Lunichnium, with examples from the Lower Permian of New Mexcio, USA. Palaeontol 49(5):1123–1142. doi:10.1111/j.1475–4983.2006.00588.x

    Article  Google Scholar 

  • Minter NJ, Braddy SJ (2009) Ichnology of an Early Permian intertidal flat: the Robledo Mountains Formation of southern New Mexico, USA. Spec Pap Palaeontol 82:1–107

    Google Scholar 

  • Morrissey LB, Braddy SJ, Bennett JP et al (2004) Fish trails from the Lower Old Red Sandstone of Tredomen Quarry, Powys, southeast Wales. Geol J 39 (3–4):337–358

    Article  Google Scholar 

  • Morrissey LB, Braddy S, Dodd C et al (2012) Trace fossils and palaeoenvironments of the Middle Devonian Caherbla Group, Dingle Peninsula, southwest Ireland. Geol J 47(1):1–29

    Article  Google Scholar 

  • Moy-Thomas JA, Miles RS (1971) Palaeozoic fishes. Chapman and Hall, London

    Book  Google Scholar 

  • Müller UK, van den Heuvel BLE, Stamhuis E et al (1997) Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J Exp Biol 200:2893–2906

    Google Scholar 

  • Müller UK, Smit J, Stamhuis EJ et al (2001) How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla). J Exp Biol 204 (16):2751–2762

    Google Scholar 

  • Murray AM (2000) The Palaeozoic, Mesozoic and early Cenozoic fishes of Africa. Fish Fish 1(2):111–145. doi:10.1046/j.1467–2979.2000.00015.x

    Article  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. John Wiley & Sons, New Jersey

    Google Scholar 

  • Netto RG, Tognoli FMW, Gandini R et al (2013) Ichnology of the Phanerozoic deposits of southern Brazil: synthetic review. In: Netto RG, Carmona NB, Tognoli FMW (eds) Ichnology of Latin America—selected papers. Monograph Sociedade Brasileira de Paleontologia, 2, Porto Alegre, pp 129–140

    Google Scholar 

  • Piñeiro G (2006) Nuevos aportes a la paleontología del Pérmico de Uruguay. In: Veroslavsky G, Martínez S, Ubilla M (eds) Cuencas sedimentarias de Uruguay. Geología, paleontología y recursos naturales. Paleozoico. DIRAC – Facultad de Ciencias (Universidad de la República), Montevideo, pp 257–278

    Google Scholar 

  • Poyato-Ariza FJ (1995) Ichthyemidion, a new genus for the elopiform fish ‘Anaethalionvidali, from the Early Cretaceous of Spain: phylogenetic comments. CR Acad Sci IIA 320:133–139

    Google Scholar 

  • Rees J, Underwood CJ (2008) Hybodont sharks of the English Bathonian and Callovian (Middle Jurassic). Palaeontology 51(1):117–147

    Article  Google Scholar 

  • Roshko A (1961) Experiments on the flow past a circular cylinder at very high Reynolds number. J Fluid Mech 10(3):345–356

    Article  Google Scholar 

  • Rusconi C (1949) Acerca del pez pérmico Neochallaia minor y otras especies. Rev Mus Hist Nat Mendoza 3:231–236

    Google Scholar 

  • Schwimmer DR, Stewart JD, Williams GD (1994) Giant fossil coelacanths of the Late Cretaceous in the eastern United States. Geology 22(6):503–506

    Article  Google Scholar 

  • Shi GR, Waterhouse JB, McLoughlin S (2010) The Lopingian of Australasia: a review of biostratigraphy, correlations, palaeogeography and palaeobiogeography. Geol J 45(2–3):230–263. doi:10.1002/gj.1213

    Article  Google Scholar 

  • Simon T, Hagdorn H, Hagdorn MK et al (2003) Swimming trace of a coelacanth fish from the Lower Keuper of south-west Germany. Palaeontology 46(5):911–926. doi:10.1111/1475–4983.00326

    Article  Google Scholar 

  • Soler-Gijón R, Moratalla JJ (2001) Fish and tetrapod trace fossils from the Upper Carboniferous of Puertollano, Spain. Palaeogeogr Palaeocl 171(1–2):1–28

    Article  Google Scholar 

  • Stanley DJ (1971) Fish-produced markings on the outer continental margin east of the middle Atlantic states. J Sediment Res 41(1):159–170

    Google Scholar 

  • Su DZ (1999) A new palaeoniscoid fish from the Upper Triassic of Zichang, northern Shaanxi. Vertebr Palasiat 37(4):257–266

    Google Scholar 

  • Todesco R, Avanzini M (2008) First record of the fish trace fossil Undichna from the Middle Triassic of Italy. Stu Trentini Sci NatActa Geol 83:253–257

    Google Scholar 

  • Trewin NH (2000) The inchnogenus Undichna, with examples from the Permian of the Falkland Islands. Palaeontol 43(6):979–997

    Article  Google Scholar 

  • Turek V (1989) Fish and amphibian trace fossils from Westphalian sediments of Bohemia. Palaeontol 32:623–643

    Google Scholar 

  • Turek V (1996) Fish trace fossil interpreted as a food gathering swimming trail from the Upper Carboniferous (Westphalian) of Bohemia. Casopis Narodniho Muzea Rada Prirodovedna 165(1–4):5–8

    Google Scholar 

  • Tytell ED, Lauder GV (2004) The hydrodynamics of eel swimming: I. Wake structure. J Exp Biol 207(11):1825–1841

    Article  Google Scholar 

  • Tytell E, Borazjani I, Sotiropoulos F et al (2010) Disentangling the functional roles of morphology and motion in the swimming of fish. Integr Comp Biol 50(6):1140–1154

    Article  Google Scholar 

  • Videler JJ (1993) Fish swimming. Chapman & Hall, London

    Book  Google Scholar 

  • Videler JJ, Müller UK, Stamhuis EJ (1999) Aquatic vertebrate locomotion: wakes from body waves. J Exp Biol 202(23):3423–3430

    Google Scholar 

  • Wang LF, Lu ZS, Gong DH et al (2008) Restoration of Late Triassic fish trace makers in Hengshan County, Shaanxi province, China. J China Univ Geosci 33(1):12–18

    Google Scholar 

  • Wardle CS (1977) Effect of size on swimming speeds of fish. In: Pedley J (ed) Scale effects in animal locomotion. Academic Press, New York, pp 299–313

    Google Scholar 

  • Wardle C, Videler J, Altringham J (1995) Tuning in to fish swimming waves: body form, swimming mode and muscle function. J Exp Biol 198(8):1629–1636

    Google Scholar 

  • Webb PW (1984) Form and function in fish swimming. Sci Am 251(1):72–82

    Article  Google Scholar 

  • Webb PW (1988) Simple physical principles and vertebrate aquatic locomotion. Am Zool 28(2):709–725

    Google Scholar 

  • Webb PW (1992) Is the high cost of body/caudal fin undulatory swimming due to increased friction drag or inertial recoil? J Exp Biol 162(1):157–166

    Google Scholar 

  • Webb PW, Blake RW (1985) Swimming. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press/Harvard University Press, Massachusetts, p 110–128

    Google Scholar 

  • Wisshak M, Volohonsky E, Blomeier D (2004) Acanthodian fish trace fossils from the Early Devonian of Spitsbergen. Acta Palaeontol Pol 49(4):629–634

    Google Scholar 

Download references

Acknowledgments

The seminal ideas for this work arose from the course “Biomechanics” taught by R. Fariña, S. Vizcaino, and T. Simanauskas in 1997. M. Girelli is thanked for initial advice on hydrodynamic analysis. N. Trewin, R. Mikuláš, and D. Hembree made suggestions that improved the original manuscript. This work was partially supported by grant 218/CN from Universidad Nacional de La Pampa and PIP 80100164 from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Néstor Melchor .

Editor information

Editors and Affiliations

Appendix

Appendix

Table A.1 Specimens of U. bina and U. insolentia measured for this work
Table A.2 Specimens of U. britannica, U. consulca, U. quina, and U. simplicitas measured for this work
Table A.3 Specimens of U. unisulca measured for this work

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cardonatto, M., Melchor, R. (2014). Biomechanical Analysis of Fish Swimming Trace Fossils (Undichna): Preservation and Mode of Locomotion. In: Hembree, D., Platt, B., Smith, J. (eds) Experimental Approaches to Understanding Fossil Organisms. Topics in Geobiology, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8721-5_12

Download citation

Publish with us

Policies and ethics