Skip to main content

Abstract

Wine has a pH of about 3.4 and is both, the most acidic and alcoholic of all fermented beverages. Malic and tartaric acids account for more than 90% of acids present in grape berries, whose total amount is within 0.19 Eq at harvest, while the K+ content lies within the 50 mEq range. Acidity exerts a dramatic impact on the organoleptic quality of table grapes and wine and is also of critical importance for the physical and biological stability of wine. The ratio between malic, tartaric acid and potassium contents depends on the cultivar, rootstock and mineral nutrition and is strongly affected in an uncontrollable way by changes in climatic conditions during berry development. The adaptation of high technology treatments like electro-dialysis to enology raises difficulties due to defaults in the acido-basic balance in the wine making process. An apparently correct acidity at harvest can mask excessive malate and potassium contents when compared to tartrate, resulting in an excessive pH after malate elimination by malolactic fermentation. The risk of bacterial alterations strongly increases with the pH of the wine and must be prevented with increased SO2 treatment or more complex sterilisation — filtration procedures. Such a practical importance of acidity explains why the biological basis of the changes in acidity in grapevines during berry development has received considerable attention. Detailed reviews on malate and tartrate metabolism in grape berries were published two decades ago (Ruffner, 1982 a and b). Principal attention will be given to the origin and confirmation of this author’s hypothesis that changes in acidity during grape berry development are triggered by events affecting vacuolar compartmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballesteros, E., Donaire, J.P., and A. Belver (1996) Effect of salt stress on H-ATPase and H -PPase activities of tonoplast-enriched vesicles from sunflower roots. Physiol. Plant. 97: 259–268.

    Google Scholar 

  • Barkla, B.J. and O. Pantoja (1996) Physiology of ion transport across the tonoplast of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.. 47: 159–184.

    Google Scholar 

  • Becker, A., Canut, H., Lüttge, U., Maeshima, M., Marigo, G., and R. Ratajczak (1995) Purification and immunological comparison of the tonoplast H’-pyrophosphatase from cells of Catharanthus roseus and leaves from Mesembryanthemum crystallinum performing C3-photosynthesis and the obligate CAM-plant Kalanchoë daigremontiana. J. Plant Physiol. 146: 88–94.

    Article  CAS  Google Scholar 

  • Berkleman, T., Houtchens, K.A., and F.M. DuPont (1994) Two cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barley roots. Plant Physiol. 104: 287–288.

    Article  Google Scholar 

  • Blom-Zandstra, M., Koot, H.T.M., van Hattum,.1., and A.C. Borstlap (1990) Interaction of uptake of malate and nitrate ion to isolated vacuoles from lettuce leaves. Planta 183: 10–16.

    Google Scholar 

  • Boubals, D., Bourzeix, M., and J. Guiraud (1971) Le Gora Chirine, variété de cépage iranienne à faible teneur en acides organiques dans les baies. Annu. Amelior. Plant. 21: 281–285.

    Google Scholar 

  • Bouyssou, H., Canut, H., and G. Marigo (1990) A reversible carrier mediates the transport of malate at the tonoplast of Catharanthus roseus cells. FEBS Lett. 275: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Bremberger, C., Haschke, H.P., and U. Lütgge (1988) Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible Crassulacean acid metabolism. Planta 175: 465–470.

    Article  CAS  Google Scholar 

  • Britten, C.J., Turner, J.C., and P.A. Rea (1989) Identification and purification of substrate-binding subunit of higher plant H’-translocating inorganic pyrophosphatase. FEBS Lett. 256: 200–206.

    Article  CAS  Google Scholar 

  • Brune, A., Gonzalez, P., Goren, R., Zehavi, U., and E. Echevarria (1998) Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifoIìa) juice cells. J. Membrane Biol. 166: 197–203.

    Article  CAS  Google Scholar 

  • Buser-Suter, C., Wiemken, A., and P. Matilc (1982) A malic acid permease in isolated vacuoles of a Crassulean acid metabolism plant. Plant Physiol. 69: 456–459

    Article  PubMed  CAS  Google Scholar 

  • Canel, C., Bailey-Serres, J.N., and M.L. Roose (1995) In vitro [14C]citrate uptake by tonoplast vesicles of acidless Citrus juice cells. J. Amer. Soc. Hort. Sci. 120: 510–514.

    Google Scholar 

  • Carystinos, G.D., MacDonald, H.R., Monroy, A.F., Dhindsa, R.S., and R.J. Poole (1995) Vacuolar H’-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice (Oryza sativa L.). Plant Physiol. 108: 641–649.

    Article  PubMed  CAS  Google Scholar 

  • Cerana, R., Giromini, L., and R. Colombo (1995) Malate-regulated channels permeable to anions in vacuoles of Arabidopsis thaliana. Aust. J. Plant Physiol. 22: 115–121.

    Google Scholar 

  • Champagnol, F. (1984) Elements de Physiologie de la Vigne et de la Viticulture Générale. F. Champagnol, ( Ed.).

    Google Scholar 

  • Chanson, A. and L. Taiz (1985) Evidence for an ATP-dependant proton pump on the Golgi of corn coleoptiles. Plant Physiol. 78: 232–240.

    Article  PubMed  CAS  Google Scholar 

  • Cheffings, C.M., Pantoja, O., Ashcroft, F.M., and J.A.C. Smith (1997) Malate transport and vacuolar ion channels in CAM plants. J. Exp. Bot. 48: 623–631.

    Google Scholar 

  • Coombe, B.G. (1992) Research on development and ripening of the grape berry. Am J. Enol. Vitic. 43: 101–110.

    Google Scholar 

  • Darley, C.P., Davies, J.M., and D. Sanders (1995) Chill-induced changes in the activity and abundance of the vacuolar proton-pumping pyrophosphatase from mung bean hypocotyls. Plant Physiol. 109: 659–665.

    PubMed  CAS  Google Scholar 

  • Davies, J. M., Poole, R. J., Rea, P.A., and D. Sanders (1992) Potassium transport into plant vacuoles energized directly by a proton pumping inorganic pyrophosphatase. Proc. Natl. Acad. Sci. U.S.A. 89: 11701–11705.

    Google Scholar 

  • Davies, J.M., Poole, R.J., and D. Sanders (1993) The computed free energy changes in inorganic pyrophosphate and ATP: apparent significance for inorganic pyrophosphate-driven reactions of intermediary metabolism. Biochim. Biophys. Acta. 1141: 29–36.

    Google Scholar 

  • Davies J.M, Hunt I., and D. Sanders (1994) Vacuolar H-pumping ATPase variable transport coupling ratio controlled by pH. Proc. Natl. Acad. Sci. U.S.A. 91: 8547–8551.

    Google Scholar 

  • Delas, J., Molot, C., and J.P. Soyer (1989) Qualité et constitution des raisins de cuve. In: Actualités oenologiques 89. Comptes-rendus du 4ème Symposium International d’Oenologie, Bordeaux, 1989. Ribereau-Gayon P and Lonvaud A., (Ed.). Dunod, pp. 1–6.

    Google Scholar 

  • Diakou, P. (1999) La Phosphoénolpyruvate Carboxylase de la Baie de Raisin (V. vinifera L.). Etude Biochimique, Métabolique et Immunocytochimique. Thesis, Univ. Bordeaux 2, p. 135.

    Google Scholar 

  • Diakou, P., Moing, A., Svanella, L., 011at, N., Rolin, D.B., Gaudillere, M., and J.P. Gaudillere (1997) Biochemical comparison of two grape varieties differing in juice acidity. Austr. J. Grape Wine Res. 3: 117–126.

    Google Scholar 

  • Dokoozlian, N.K. and W.M. Kliewer (1996) Influence of light on grape berry growth and composition during fruit development. J. Amer. Soc. Hort. Sci. 121: 869–874.

    Google Scholar 

  • Drozdowicz, Y.M., Lu, Y.P., Patel, V., Fitz-Gibbon, S., Miller, J.H., and P.A. Rea (1999) A thermostable vacuolar-type membrane pyrophosphatase from the archeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Lett. 460: 505–512.

    Article  PubMed  CAS  Google Scholar 

  • DuPont, F.M. (1989) Effect on temperature on the plasma membrane and tonoplast ATPases of barley roots. Plant Physiol. 89: 1401–1412.

    Article  PubMed  CAS  Google Scholar 

  • DuPont,’ F:M. and P.J. Morissey (1992) Subunit composition and Cal -ATPase activity of the vacuolar ATPase from barley roots. Arch. Biochem. Biophys. 294: 341–346.

    Google Scholar 

  • Echevarria, E., Gonzalez, P., and A. Brune (1997) Characterization of proton and sugar transport at the tonoplast of sweet lime (Citrus linsmetioides) juice cells. Physiol. Plant. 101: 291–300.

    Google Scholar 

  • Façanha, A. R. and L. de Meis (1998) Reversibility of H’-ATPase and H’-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol. 116: 1487–1495.

    Article  Google Scholar 

  • Feng, Y. and M. Forgac (1992) A novel mechanism for regulation of vacuolar acidification J. Biol. Chem. 267: 19769–19772.

    Google Scholar 

  • Fichmann, J., Taiz, L., Gallagher, S., Leonard, R.T., Depta, H., and D.G. Robinson (1989) Immunological comparision of the coated vesicle H-ATPases of plant and animals. Protoplasma 153: 117–125.

    Article  Google Scholar 

  • Fill on, L., Ageorges, A., Picaud, S., Coutos-Thévenot, P., Romieu, C., and S. Delrot (1999) Cloning and expression of an hexose transporter gene induced at the véraison of grape berry. Plant Physiol. 120: 1083–1093.

    Article  Google Scholar 

  • Franke, K.E. and D.O. Adams (1995) Cloning of a full-length cDNA for matie enzyme (EC 1.1.1.40) from grape berries. Plant Physiol. 107: 1009–1010.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Granda, M.J. and J.C. Morisson (1992) Solute distribution and malic enzyme activity in developing grape berries. Am. J. Enol. Vitic. 43: 323–328.

    Google Scholar 

  • Hale, C.R. (1977) Relation between potassium and the malate and tartrate contents of grape berries. Vitis 16: 9–19.

    CAS  Google Scholar 

  • Hardy, P. J. (1968) Metabolism of sugars and organic acids in immature grape berries. Plant Physiol. 43: 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J.M., Kriedermann, P.E, and J.V. Possingham (1968) Anatomical aspects of grape berry development. Vitis 7: 106–119.

    Google Scholar 

  • Harris, J.M., Kriedemann, P.E., and J.V. Possingham (1971) Grape berry respiration: effects of metabolic inhibitors. Vitis 9: 291–298.

    CAS  Google Scholar 

  • Hawker, J.S. (1969) Changes in the activities of malic enzyme, malate dehydrogenase, phosphoenolpyruvate carboxylase and pyruvate decarboxylase during development of a non-climacteric fruit (the grape). Phytochemistry 8: 19–23.

    Article  CAS  Google Scholar 

  • Kaestner, K.H. and H. Sze (1987) Potential dependant anion transport in tonoplast vesicles from oat roots. Plant Physiol. 83: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, M., Nakamura, T., Kudo, N., Sato, H., Maeshima, M., and S. Sawada (1998) The activity of the root vacuolar HtPyrophosphatase in rye plants grown under conditions deficient in mineral nutrients. Plant Cell Physiol. 39: 890–894.

    Article  PubMed  CAS  Google Scholar 

  • Koch, R. and G. Alleweldt (1978) Der Gaswechsel reifender Weinbeeren. Vitis 17: 30–44.

    CAS  Google Scholar 

  • Kliewer, W.M. and L.A. Lider (1968) Influence of cluster exposure to the sun on the composition of Thompson seedless fruit. Amer. J. Enol. Vitic. 19: 175–184.

    Google Scholar 

  • Lai, S., Watson, J.C., Hanson, J.N., and H. Sze (1991) Molecular cloning and sequencing of the cDNAs encoding the proteolipid subunit of the vacuolar H-ATPase from a higher plant. J Biol. Chem. 266. 16078–16084.

    Google Scholar 

  • Lance, C. and P. Rustin (1984) The central role of malate in plant metabolism. Physiol. Veg. 22: 625–641.

    Google Scholar 

  • Lahjouji, K., Carrasco, A., Bouyssou, H., Cazaux, L., Marigo, G., and H. Canut (1996) Identification with a photoaffinity reagent of a tonoplast protein involved in vacuolar malte transport of Catharantus roseus. Plant. J. 9: 799–808.

    Google Scholar 

  • Lakso, A.N. and W.M. Kliewer (1975) Physical properties of phosphoenolpyruvate carboxylase and matie enzyme in grape berries. Am. J. Enol. Vitic. 26: 75–78.

    Google Scholar 

  • Lasko, A. N. and W.M. Kliewer (1978) The influence of temperature on malic acid metabolism in grape berries. II. Temperature response of net dark CO2 fixation and malic acid pools. Am. J. Enol. Vitic. 29: 145–149.

    Google Scholar 

  • Latzko, E and G.J Kelly (1983) The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol. Vég. 21: 805–815.

    Google Scholar 

  • Loewus, F.A. (1999) Biosynthesis and metabolism of ascorbic acid in plants and of anologs of ascorbic acid in fungi. Phytochemistry 52: 193–210.

    Article  CAS  Google Scholar 

  • Lunge, U. (1987) Carbon dioxide and water demand: Crassuladean acid metabolism ( CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysioogicla work. New Phytol. 106: 593–629.

    Google Scholar 

  • Lüttge, U. and J.A. Smith (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoe daigremontiana. J. Membrane Biol. 81: 149–158.

    Article  Google Scholar 

  • Lüttge, U., Fischer-Schliebs, E., Ratajczak, R., Kramer, D., Berndt E., and M. Kluge (1995) Functionning of the tonoplast in vacuolar C-storage and remobilization in crassulean acid metabolism. J. Exp. Bot. 46: 1377–1388.

    Google Scholar 

  • Maeshima, M. (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiol. 31: 311–317

    CAS  Google Scholar 

  • Maeshima, M. (1991) H’-translocating inorganic pyrophosphatase of plant vacuoles. FEBS Lett. 196: 11–17.

    CAS  Google Scholar 

  • Maeshima, M and S. Yoshida (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J. Biol. Chem. 264: 20068–20073.

    Google Scholar 

  • Mango, G., Bouyssou, H., and D. Laborie (1988) Evidence for a malate transport into vacuoles isolated from Catharantus roseu. Bot. Acta. 101: 187–191.

    Google Scholar 

  • Marquardt-Jarczyk, G., and U. Lüttge (1990) PPase-activated ATP-dependant H’ transport at the tonoplast of mesophyll cells of the CAM plant Kalanchoe daigremontiana. Bot. Acta 103: 203–213.

    Google Scholar 

  • Martinoia, E., Flügge, U.I., Kaiser, G., Heber, U., and H.W. Heldt (1985) Energy-dependant uptake of malate into vacuoles isolated from barley mesophyll protoplasts. Biochim. Biophys. Acta 806: 311–319.

    Google Scholar 

  • Martinoia E., Vogt, E. Rentsch, D., and N. Amrhein (1991) Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes. Biochim. Biophys. Acta 1062: 271–278.

    Google Scholar 

  • Martinoia, E. and R. Ratajczak (1997) Transport of organic molecules across the tonoplast. In: The Plant Vacuole, Leigh R.A. and D. Sanders (Eds). Advances in Botanical Research. Academic Press, London, pp. 366–390.

    Google Scholar 

  • Menegus, F., Cattaruzza, L., Mattana, M., Beffagna, N., and E. Ragg (1991) Response to anoxia in rice and wheat seedlings: Changes in the pH of intracellular compartments, glucose-6- phosphate level, and metabolic rate. Plant Physiol. 95: 760–767.

    Article  PubMed  CAS  Google Scholar 

  • Meyhnardt, J.T. (1963) Assimilation of 14C labelled carbon dioxide by Barlinka grape berries, Proc. Nat. Conf. Nuclear Energy, South Africa, 456–463.

    Google Scholar 

  • Millner, I.D., Ho, L.C., and J.L. Hall (1995) Properties of proton and sugar transport at the tonoplast of tomato (Lycopersicon esculentum) fruit. Physiol. Plant 94: 399–410.

    Google Scholar 

  • Molina, I., Nicolas, M., and J. Crouzet (1986) Grape Alcohol Deshydrogenase. I. Isolation and characterization. Am. J. Enol. Vitic. 37: 169–173.

    Google Scholar 

  • Müller, M. L., Irkens-Kiesecker, U., Rubinstein, B., and L. Taiz (1996) On the mechanism of hyperacidification in lemon. J. Biol. Chem. 271: 1916–1924.

    Google Scholar 

  • Narasimham, M.L., Binzel, M.L., Perez-Prat, E., Chen, Z., Nelson, D.E., Singh, N.K., Bressan, R.A., and P.M. Hasegawa (1991) NaCI regulation of tonoplast ATPase 70-kilodalton subunit mRNA in tobacco cells. Plant Physiol. 97: 562–568.

    Article  Google Scholar 

  • Nishida, K. and O. Tominaga (1987) Energy-dependent uptake of malate into vacuoles isolated from CAM plant, Kalanchoe daigremontiana. J. Plant. Physiol. 127: 385–393.

    Google Scholar 

  • Ojeda, H., Deloire, A., Carbonneau, A., Ageorges, A., and C. Romieu (1999) Grapevine berry (V. vinifera L.) development basis: relations between the berry growth and the evolution of their total DNA; determination of cell multiplication and enlargement. Vitis 38: 145–150.

    Google Scholar 

  • Okazaki, Y., Kikuyama, M., Hiramoto, Y., and N. Iwasaki (1996) Short-term regulation of cytosolic Ca2’, cytosolic pH and vacuolar pH under NaCI stress in the chalophyte alga Nitellopsis obtusa. Plant Cell Environ. 19: 569–576.

    Article  CAS  Google Scholar 

  • Oleski, N., Mandavi, P., and A.B. Benett (1987) Transport properties of the tomato fruit tonoplast. Plant Physiol. 84: 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • Parry, R.V., Turner, J.C., and P.A. Rea (1989) High purity preparations of higher plant vacuolar H’-ATPase

    Google Scholar 

  • reveal additionnai subunits. J. Biol. Chem. 267: 5171–5176.

    Google Scholar 

  • Peynaud, E. and P. Ribereau-Gayon (1971) The Grape. In: The Biochemistry of Fruits and their Products, A.C. Hulme (Ed.). Academic Press, London, pp. 171–205.

    Google Scholar 

  • Poole, R.J. (1978) Energy coupling for membrane transport. Annu Rev. Plant Physiol. 29: 437–460.

    Google Scholar 

  • Ratajczak, R., Kemna, I., and U. Lüttge (1994) Characteristics, partial purification and reconstitution of the vacuolar malate transporter of the CAM plant Kalanchoe daigremontiana Hamet et Perrier de la Bâthie. Planta 195: 226–236.

    Article  CAS  Google Scholar 

  • Rea, P.A., Britten, C.J., and V. Sarafian (1992) Common identity of substrate binding subunit of vacuolar H’translocating inorganic pyrophosphatase of higher plant cells. Plant Physiol. 100: 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Rea, P.A. and R.J. Poole (1993) Vacuolar H’-translocating pyrophosphatase. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 157–180.

    Google Scholar 

  • Rentsch, D. and E. Martinoia (1991) Citrate transport into barley mesophyll vacuoles. Comparison with malate-uptake activity. Planta 184: 532–537.

    Google Scholar 

  • Rentsch, D., Görlach, J., Vogt, E., Amrheim, N., and E. Martinoia (1995) Identification and sequencing of a citrate-binding protein of the vacuolar-like lutoid membrane of Hevea brasiliensis. J. Biol. Chem. 270: 30525–30531.

    Google Scholar 

  • Rivoal, J., Ricard, B., and A. Pradet (1991) Lactate dehydrogenase in Oryza sativa L. seedlings and roots. Plant Physiol. 95: 682–686.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J.M., Callis, J., Jardetzky, O., Walbot, V., and M. Freeling (1984) Cytoplasmic determinant of flooding tolerance in plants. Proc. Natl. Acad. Sci. U.S.A. 8: 6029–6033.

    Google Scholar 

  • Roberts, J.M., Lane, A.N., Clark, R.A., and R.H. et Nieman (1985) Relationships between the rate of synthesis of ATP and the concentrations of reactants and products of ATP hydrolysis in maize root tips, determined by “P nuclear magnetic resonance. Arch. Biochem. Biophys. 240: 715–722.

    Google Scholar 

  • Romieu, C. and C. Flanzy (1988) Extraction des mitochondries de baies de raisin (V. vinìfera). Plant Physiol. Biochem. 26: 589–596.

    Google Scholar 

  • Romieu, C., Tesnière, C., Than-Ham, L, Flanzy, C., and J.P. Robin (1992) An examination of the importance of anaerobiosis and ethanol causing injury to grape mitochondria. Am. J. Enol. Vitic. 463: 129–133.

    Google Scholar 

  • Ros, R., Romieu, C., Gibrat, R, and C. Grignon (1995) The plant inorganic pyrophosphatasc does not transport K’ in vacuole membrane vesicles labelled with fluorescence probes for H’, K. and membrane potential. J. Biol. Chem. 270: 4368–4374.

    Google Scholar 

  • Rouquié, D., Tournaire-Roux, C., Szponarski, W., Rossignol, M., and P. Doumas (1998) Cloning of the V- ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett. 437: 287–292.

    Article  PubMed  Google Scholar 

  • Ruffner, H.P. (1982a) Metabolism of tartaric and malic acids in Vitis: a review- Part A. Vitis 21: 247–259.

    CAS  Google Scholar 

  • Rütfner, II.P. (1982b) Metabolism of tartaric and malie acids in Vitis: a review- Part B. Vitis 21: 346–358.

    Google Scholar 

  • Ruffner, H.P. and W.M. Kliewer (1975) Phosphoenolpyruvate carboxykinase activity in grape berries, Plant Physiol. 56: 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M.H., Maeshima, M., Oshumi, Y., and M. Yoshida (1991) Dimeric structure of H-translocating pyrophosphatase from pumpkin vacuolar membranes. FEBS Lett. 290: 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K. (1994) Specific transfer of 311 from D-[3 3H]gluconic acid into L-tartane acid in vitaeeous plants. Phytochemistry 37: 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  • Saulnier-Blache, P. and F. Bruzeau (1967) Développement du raisin. III. Nouvelles recherches sur la croissance et la respiration pendant le passage de la phase de croissance végétative à la maturation. Ann. Physiol. Veg. 9: 179.

    Google Scholar 

  • Sauvage, F.-X., Romieu, C., Sarris, J., Pradal, M., Robin, J.-P., and C. Flanzy (1991) Evolution de quelques activités enzymatiques au cours de la maturation du raisin. Influence d’un stress hypoxique après la vendange. Rev. Fr. Oenol. 132: 14–20.

    Google Scholar 

  • Shiratake, K., Kanayama, Y., Maeshima, M., and S. Yamaki (1997) Changes in Htpumps and a tonoplast intrisic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol. 38: 10391045.

    Google Scholar 

  • Sinclair, W.B. (1984) Organic acids of lemon fruits. In The Biochemistry and Physiology of the Lemon and other Citrus Fruits, C.A. Oakland. University of California, Agriculture and Natural Resources Publications, pp. 132–134.

    Google Scholar 

  • Steffan, H., Rapp, A., Ullemeyer, H., and G. Kupfer (1975) Uber den reifeabhängigen Säure-Zuker Stoffwechsel bei beeren von V vinifera-Sorten, untersucht mit “C-Verbindungen. Vitis 14: 181–189.

    CAS  Google Scholar 

  • Storey, R. (1987) Potassium localization in the grape berry pericarp by energy-dispersive X-Ray micoranalysis.Am. J. Enol. Vitic. 38: 301–309.

    Google Scholar 

  • Suzuki, K. and K. Kasamo (1993) Effects of ageing on the ATP- and pyrophosphate-dependant pumping of protons across the tonoplast isolated from pumpkin cotyledons. Plant Cell Physiol. 34: 613–619

    CAS  Google Scholar 

  • Swanson, S. J. and R.L. Jones (1996) Gibberellic acid induces vacuolar acidification in barley aleurone. The Plant Cell 8: 2211–2221.

    PubMed  CAS  Google Scholar 

  • Sze, H. (1985) H’-translocating ATPases: advances using membrane vesicles. Annu Rev. Plant Physiol. 36: 175–208.

    Google Scholar 

  • Tadege, M., Brandie, R., and C. Kuhlmeyer (1997) Aerobic fermentation during tobacco pollen development. Plant Mol. Biol. 35: 343–354.

    Google Scholar 

  • Taureilles-Saurel, C. Romieu, C. Robin, J.P., and C. Flanzy (1995) Grape (V. vinifera L.) malate dehydrogenase. It. Characterization of the major mitochondrial and cytosolic isoforms and their role in ripening. Am. J. Enol. Vitic. 43: 29–36.

    Google Scholar 

  • Terrier, N. (1997) Aspects Bioénergétiques et Moléculaires du Stockage des Acides Organiques dans la Baie de Raisin (V. vinifera L.). Thèse de Doctorat, Ecole Nationale Supérieure Agronomique de Montpellier, pp. 193

    Google Scholar 

  • Terrier, N., Sauvage, F.X., and C. Romieu (1995) Absence de crise respiratoire, induction de l’activité alcool déshydrogénase et diminution de l’acidité vacuolaire lors de la maturation du raisin. In: (Enologie 95 5è11e Symposium International d’OEnologie, A. Lonvaud-Funel (Ed.). Technique et Documentation Lavoisier, Londres.

    Google Scholar 

  • Terrier, N., Deguilloux, C., Sauvage, F.-X., Martinoia, E., and C. Romieu (1998) Proton pumps and anion transport in V. vinifera: the inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast. Plant Physiol. Biochem. 36: 367–377.

    Google Scholar 

  • Terrier, N., Sauvage, F.-X., Ageorges, A., and C. Romieu (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta (in press).

    Google Scholar 

  • Tesnière, C. and C. Verries (2000) Molecular cloning and expression of cDNAs encoding alcohol dehydrogenase from V. vinifera L. during berry development. Plant Sci. 157: 77–88.

    Article  PubMed  Google Scholar 

  • Wagner, G.J. and P. Mulready (1983) Characterization and solubilization of nucleotide-specific Mgt’-ATPase and Mgt’-pyrophosphatase of tonoplast. Biochim. Biophys. Acta. 728: 267–280.

    Google Scholar 

  • Ward, J.M. and H. Sze (1992) Subunit composition and organization of the vacuolar H’-ATPase from oat roots. Plant Physiol. 99: 170–179.

    Article  PubMed  CAS  Google Scholar 

  • White, P,J. and J.A.C. Smith (1989) Proton and anion transport at the tonoplast in crassulean-acid-metabolism plants: specificity of the malate-influx system in Kalanchoe daigremontiana. Planta 179: 265–274.

    Article  Google Scholar 

  • Willmer, C.M., Grammatikopoulos, G., Lascève, G., and A. Vavasseur (1995) Characterization of the vacuolar-type H+-ATPase from guard cell protoplasts of Commelina. J. Exp. Bot. 46: 383–389.

    Google Scholar 

  • Yoshida, S. (1994) Low temperature-induced cytoplasmic acidosis in cultured mung bean cells. Plant Physiol. 104: 1131–1138.

    PubMed  CAS  Google Scholar 

  • Yin, Z.H. Neimanis, S. Wagner, U., and U. Heber (1990) Light dependent pH changes in leaves of C-3 plants.l. Recording pH changes in various cellular compartments by fluorescent probes. Planta 182: 244252.

    Google Scholar 

  • Zhen, R.G., Kim, E.J., and P.A. Rea (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N’-dicyclohexylcarbodiimide. J. Biol. Chem. 272: 22340–22348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Terrier, N., Romieu, C. (2001). Grape Berry Acidity. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics