Skip to main content

Use of PCR for Rapid Identification of Acidovorax avenae and A. avenae subsp. citrulli

  • Conference paper
Pseudomonas syringae and related pathogens

Abstract

The species Acidovorax avenae contains bacteria pathogenic to several crops: A. a. subsp. avenae infects oats, corn, rice, millet, and sugarcane; subsp. citrulli infects watermelon and melon; and subsp. cattleyae infects orchid. Because these bacteria are closely related their proper identification requires expensive, time-consuming pathogenicity tests. To develop PCR assays for rapid identification of all species and subsp. citrulli, we sequenced the intergenic spacer region of the 16S–23S rDNA and designed avenae-specific and subsp. citrulli-specific classical primers and real-time primers and probes. Classical avenae-specific primers Oafl/Oarl amplified a DNA product from all 46 strains of subsp. avenae originating from foxtail, oats, corn, rice, sugarcane, and millet; the type strains of subsp. cattleyae from orchid; and 11 strains of subsp. citrulli from watermelon. Real-time avenae-specific primers Oafl/Oar2 and probe AaP1 reacted with all 40 strains of subsp. avenae, the type strain of subsp. cattleyae, and 8 strains of subsp. citrulli. Classical citrulli-specific primers Aacf2/Aacr2 and real-time primers Aacf3/Aacr2 and probe AaP2 amplified a PCR product from all 11 strains of subsp. citrulli, but not from any other strain of subsp. avenae. None of over 50 other bacteria tested generated a PCR product with either classical primers or real-time primers and probe. The species-specific classical primers Oafl/Oarl and real-time primers Oafl/Oar2 and probe AaP1 should prove useful for rapid identification of A. avenae strains from all hosts, whereas the citrulli-specific classical primers Aacf2/Aacr2 and real-time primers Aacf3/Aacr2 and probe AaP2 should be useful for specific identification of subsp. citrulli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ark, P.A., and Thomas, H.E., 1946, Bacterial leaf spot and bud rot of orchids caused by Phytomonas cattleyae. Phytopathology 36: 695–698.

    Google Scholar 

  • Barry, T., Colleran, G., Glennon, M.M., Dunican, L.K., and Gannon, F., 1991, The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Cook, D., and Sequeira, L., 1991, The use of subtractive hybridization to obtain a DNA probe specific for Pseudomonas solanacearum race 3. Mol. Gen. Genet. 227: 401–410

    Article  PubMed  CAS  Google Scholar 

  • Dolzani, L., Tonin, E., Lagatolla, C., and Monti-Bragadin, C., 1994, Typing of Staphylococcus aureus by amplification of the 16S–23S rRNA intergenic spacer sequences. FEMS Microbiol. Lett. 119: 167–174.

    PubMed  CAS  Google Scholar 

  • van der Giessen, J.W.B., Haring, R.M., and Van der Zeijst, B.A.M., 1994, Comparison of the 23S ribosomal RNA genes and the spacer region between the 16S and 23S rRNA genes of the closely related Mycobacterium avium and Mycobacterium paratuberculosis and the fast-growing Mycobacterium phlei. Microbiology. 140: 1103–1108.

    Article  Google Scholar 

  • Goto, M., 1964, Nomenclature of the bacteria causing bacterial leaf streak and bacterial stripe of rice. Bull. of Faculty of Agriculture, Shizuoka University, 14: 3–10.

    Google Scholar 

  • Goto, M., and Okabe, N., 1952, Studies on the causal organisms of bacterial stripe disease of millet and the brown stripe disease of Italian millet. Bull. Fac. Agric. Shizuoka Univ. 2: 15–24

    Google Scholar 

  • Gurtler, V., and Barrie, H.D., 1995, Typing of Staphylococcus aureus strains by PCRamplification of variable-length 16S–23S rDNA spacer regions: characterisation of spacer sequences. Microbiology 141: 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, S., Hill, C.W., Squires, C., and Squires, C.L., 1988, Loss of the spacer loop sequence from the rrnB operons in the Escherichia coli K-12 subline that bears the relAl mutation. I Bacteriol. 170: 1235–1238.

    CAS  Google Scholar 

  • Hu, F.P., Young, J.M., and Trigg, C.M., 1991, Numerical analysis and determination tests for non-fluorescent plant-pathogenic Pseudomonas spp. and genomic analysis and reclassification of species related to Pseudomonas avenae Manns 1909. Int. J. Syst. Bacteriol. 41: 516–523.

    Article  Google Scholar 

  • Jensen, M.A., Webster, J.H., and Straus, N., 1993, Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphism. Appl. Environ. Micro. 59: 945–952.

    CAS  Google Scholar 

  • Jones, J.B., Gitaitis, R.D., and Schaad, N.W., 2001, Acidovorax and Xylophilus. In: N.W. Schaad, J.B. Jones, and W. Chun (eds). Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press. St. Paul, MN.

    Google Scholar 

  • Kim, H.M., and Song, W.Y., 1996, Characterisation of ribosomal RNA intergenic spacer region of several seedborne bacterial pathogens of rice. Seed Sci. Technol. 24: 571–580.

    Google Scholar 

  • Kostman, J.R., Edlind, T.D., LiPuma, J.J., and Stull, T.L., 1992, Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J. Clin. Microbiol. 30: 2048–2087.

    Google Scholar 

  • Leblond-Bourget, N., Philippe, H., Mangin, I., and Decaris, B., 1996, 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Bifidobacterium phylogeny. Int. J. Syst. Bacteriol. 46: 102–111.

    Google Scholar 

  • Loughney, K., Lund, E., and Dahlberg, J.E., 1982, tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res. 10: 1607–1624.

    Google Scholar 

  • Maniatis, T., Fritsch, E.F., and Sambrook, J., 1989, Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, N.Y.

    Google Scholar 

  • Maims, T.F., 1909, The blade blight of oats-a bacterial disease. Ohio Agric. Exp. Stn. Res. Bull. 210: 91–167.

    Google Scholar 

  • Martin, J.P., and Wismer, C.A., 1989, Red Stripe. In: Diseases of Sugarcane. pp. 80–91. ( Eds) C. Ricaud, B.T. Egan, A.G. Gillespie, Jr., and C.G. Hughes. Elsevier, The New York, N.Y.

    Google Scholar 

  • Matar, G.M., Swaminathan, B., Hunter, S.B., Slater, L.N., and Welch, D.F., 1993, Polymerase chain reaction-based restriction fragment length polymorphism analysis of a fragment of the ribosomal operon from Rochalimaea species for subtyping. J. Clin. Microbiol. 31: 1730–1734.

    PubMed  CAS  Google Scholar 

  • Mills, D., Russell, B.W., and Hanus, J.W., 1997, Specific detection of Clavibacter michiganensis subsp. sepedonicus by amplification of three unique sequences isolated by subtractive hybridisation. Phytopathology 87: 852–861.

    Article  Google Scholar 

  • Minsavage, G.V., Hoover, R.J., Kucharek, T.A., and Stall, R.E., 1995, Detection of the watermelon fruit blotch pathogen on seeds with the polymerase chain reaction. Ann. Meeting Amer. Phytopath. Soc. Abstract, no. 379.

    Google Scholar 

  • Nakagawa, T., Shimada, M., Mukai, H., Asada, K., Kado, I., Fujino, K., and Sato, T., 1994, Detection of alcohol-tolerant Hiochi bacteria by PCR. Appl. Environ. Microbiol. 60: 637–640.

    PubMed  CAS  Google Scholar 

  • Navarro, E., Simonet, P., Normand, P., and Bardin, R., 1992, Characterisation of natural populations Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch. Microbiol. 157: 107–115.

    PubMed  CAS  Google Scholar 

  • Prosen, D., Hatziloukas, E., Schaad, N.W., and Panopoulous, N.J., 1993, Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reactionbased amplification of a phaseolotoxin gene region. Phytopathology. 83: 965–970.

    Article  CAS  Google Scholar 

  • Regnery, R.L., Spruill, C.L., and Plakaytis, B.D., 1991, Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol. 173: 1576–1589.

    PubMed  CAS  Google Scholar 

  • Rosen, J.R., 1922, A bacterial disease of foxtail (Chaetochloa lutescens). Ann. Mo. Bot. Gard. 9: 333–402.

    Article  Google Scholar 

  • Rosen, J.R., 1926, Bacterial stalk rot of corn. Phytopathology. 16: 241–267.

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulsen, A.R., 1977, DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Savulescu, T., 1947, Contribution a la classification des bacteriacees phytopathogenes. An. Acad. Romane Ser. 11122: 135–160.

    Google Scholar 

  • Schaad, N.W., 2001, 3rdEd. Initial Identification of Common Genera. In: N.W. Schaad, J.B. Jones, and W. Chun (eds), Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press. St. Paul, MN.

    Google Scholar 

  • Schaad. N.W., Berthier-Schaad, Y., Sechler, A., and Knorr, D., 1999, Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Pl. Dis. 83: 1095–1100.

    Article  Google Scholar 

  • Schaad, N.W., Gaush, P., Postnikova, E., and Frederick, R., 2001, On-site one hour PCR diagnosis of bacterial diseases. Phytopathology, 91: S79 (Abstr).

    Google Scholar 

  • Schaad, N.W., Kado, C.I., and Summer, D.R., 1975, Synonymy of Pseudomonas avenae Manns 1905 and Pseudomonas alboprecipitans Rosen 1922. Int. J. Syst. Bacteriol. 25: 133–137.

    Article  Google Scholar 

  • Schaad, N.W., Opgenorth, D., and Gaush, P., 2002, Real-time PCR for one-hour on-site diagnosis of Pierce’s disease of grape in early season asymptomatic vines. Phytopathology, 92: 721–718.

    Article  PubMed  CAS  Google Scholar 

  • Schaad, N.W., Song, W.Y., and Hatziloukas, E., 2000, PCR primers for detection of plant pathogenic species and species of Acidovorax. United States patent number 6: 146, 834.

    Google Scholar 

  • Schaad, N.W., Sowell Jr., G., Goth, R.W., Colwell, R.R., and Webb, R.E., 1978, Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Bacteriol. 28: 117125.

    Google Scholar 

  • Shakya, D.D., 1987, Rapid diagnosis of Pseudomonas avenae by pathogenicity and serology. Korean. J. Pl. Path. 3: 300 (Abst).

    Google Scholar 

  • Song, W.Y., Kim, H.M., and Schaad, N.W., 2002, PCR primers for detection and identification of plant pathogenic species, subspecies, and strains of Acidovorax. United States patent number 6: 423–499.

    Google Scholar 

  • Walcott, R.R., and Gitaitis, R.D., 2000, Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis. 84: 470–474.

    Article  CAS  Google Scholar 

  • Weller, S.A., and Stead, D.E., 2002, Detection of root mat associated Agrobacterium strains from plant material and other samples types by post-enrichment TaqMan PCR. J. Appl. Microbiol. 92: 118–126.

    Article  PubMed  CAS  Google Scholar 

  • Weller, S.A., Elphinstone, J.G., Smith, N.C., Boonham, N., and Stead, D.E., 2000a, Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 66: 2853–2858.

    Article  PubMed  CAS  Google Scholar 

  • Weller, S.A., Elphinstone, J.G., Smith, N.C., and Stead, D.E. 2002b, Detection of Ralstonia solanacearum from potato tissue by post-enrichment TaqMan PCR. OEPP/EPPO Bull. 30: 381–383.

    Article  Google Scholar 

  • Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., and De Ley, J. 1992, Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42: 107–119.

    Article  CAS  Google Scholar 

  • Zavaleta, A.I., Martinez-Murcia, A.J., and Rodriguez-Valera, F., 1996, 16S–23S rDNA intergenic sequences indicate that Leuconostoc oenos is phylogenetically homogeneous. Microbiology 142: 2105–2114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Song, W.Y., Sechler, A.J., Hatziloukas, E., Kim, H.M., Schaad, N.W. (2003). Use of PCR for Rapid Identification of Acidovorax avenae and A. avenae subsp. citrulli . In: Iacobellis, N.S., et al. Pseudomonas syringae and related pathogens. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0133-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0133-4_59

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6267-3

  • Online ISBN: 978-94-017-0133-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics