Skip to main content

Abstract

In the vast majority of insects respiration takes place by means of internal air-tubes known as tracheae These ramify through the organs of the body and its appendages, the finest branches being termed tracheoles. The air generally enters the tracheae through paired, usually lateral, openings termed spiracles, which are segmentally arranged along the thorax and abdomen. More rarely the spiracles are closed or wanting, respiration in such cases being cutaneous. In the immature stages of many aquatic insects special respiratory organs known as gills or branchiae are present, and these may or may not co-exist with open spiracles. The respiratory organs of insects are always derived from ectoderm: the tracheae are developed from solid ingrowths or tubular invaginations of that layer and the gills arise as hollow outgrowths. Histologically, both are composed of a layer of cuticle, the epidermis and usually a basement membrane, all directly continuous with similar layers forming the general body-wall. All or most of the cuticular lining of the tracheo-spiracular system is usually shed at ecdysis. A tracheal system is absent in most Collembola, some Protura and some endoparasitic Hymenopteran and Dipteran larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on the Respiratory System

  • AFZELIUS, B. A. AND GONNERT, N. (1972), Intramitochondrial tracheoles in flightmuscle from the hornet, Vespa crabro (Hym., Vespidae, J. Submicr. Cytol., 4, 1–6.

    Google Scholar 

  • AHEARN, G. A. (1970), The control of water loss in desert Tenebrionid beetles, J. exp. Biol., 53, 573–595.

    PubMed  CAS  Google Scholar 

  • BEAULATON, J. (1968), Modifications ultrastructurales des trachées et genèse de petites trachées et trachéoles chez les vers à soie en periode de mue. J. Microscopie, 7, 621–646.

    Google Scholar 

  • BEINBRECH, G. (1970), Zur Flugmuskelentwicklung von Phormia regina: Beziehungen zwischen dem Sarkotubulären und dem Trachealsystem, Zool. Anz., Suppl., 33, 401–407.

    Google Scholar 

  • BERGOLD, G. (1935), Die Ausbildung der Stigmen bei Coleopteren verschiedener Biotope, Z. Morph. Ökol. Tiere, 29, 511–526.

    Article  Google Scholar 

  • BHATNAGAR, B. S. (1972), Spiracles in certain terrestrial Heteroptera, Int. J. Insect Morphol & Embryol., 1, 207–217.

    Article  Google Scholar 

  • BROCKWAY, A. P. and Schneiderman, H. A. (1967), Strain-gauge transducer studies on intratracheal pressure and pupal length during discontinuous respiration in diapausing silkworm pupae, J. Insect Physiol., 13, 1413–1451.

    Article  Google Scholar 

  • BUCK, J. (1962), Some physical aspects of insect respiration, A. Rev. Ent., 7, 27–56.

    Article  Google Scholar 

  • BURSELL, E. (1955), The polypneustic lobes of the tsetse larva (Glossina, Diptera), Proc. R. Soc (B), 144, 275–286.

    Article  Google Scholar 

  • CASE, J. F. (1957), Differentiation of the effects of pH and CO2 on spiracular function of insects. J. cell. comp. Physiol., 49, 103–113.

    Article  CAS  Google Scholar 

  • CLAUSEN, C. P. (1950), Respiratory adaptations in the immature stages of parasitic insects, Arthropoda, 1, 197–224.

    Google Scholar 

  • COMSTOCK, J. H. (1918), The Wings of Insects, Comstock Publ. Go., Ithaca, New York, 430 pp.

    Google Scholar 

  • DAMANT, G. C. C. (1924), The adjustment of the buoyancy of the larva of Corethra plumicornis, J. Physiol, 59, 345–356.

    CAS  Google Scholar 

  • DINULESCU, G. (1932), Recherches sur la biologie des Gastrophiles. Anatomie, physiologie, cycle évolutif, Ann. Sci. nat. Paris, (10), 15, 1–183.

    Google Scholar 

  • EASTHAM, L. E. S. (1958), The abdominal musculature of nymphal Chloeon dipterum L. (Insecta: Ephemeroptera) in relation to gill movements and swimming, Proc. zool. Soc. Lond., 131, 279–291.

    Google Scholar 

  • EDWARDS, G. A., RUSKA, H. AND DE HARVEN, E. (1958), The fine structure of insect tracheoblasts, tracheae and tracheoles, Arch. Biol., 69, 351–369.

    CAS  Google Scholar 

  • EGE, R. (1915), On the respiratory function of the air stores carried by some aquatic insects, Z. allg. Physiol., 17, 81–124.

    Google Scholar 

  • ERIKSEN, C. H. (1963), Respiratory regulation in Ephemera simulans Walker and Hexagenia limbata (Serville) (Ephemeroptera), J. exp. Biol, 40, 455–467.

    CAS  Google Scholar 

  • FAUCHEUX, M. J. (1972), Relations entre l’ultrastructure de l’intima cuticulaire et les fonctions des sacs aeriens chez les insectes, C. r. Acad. Sci., Paris, D, 274, 1518–1521.

    Google Scholar 

  • FAUCHEUX, M. J. AND SELLIER, R. (1971), L’ultrastructure de l’intima cuticulaire des sacs aeriens chez les insectes, C.r. Acad. Sci., Paris, D, 272, 2197–2200.

    Google Scholar 

  • FRAENKEL, G. (1932), Beiträge zur Physiologie der Atmung der Insekten. Arch. Zool., Torino, 16, 905–921.

    Google Scholar 

  • FULLER, C. (1919), The wing venation and respiratory system of certain South African termites, Ann. Natal Mus., 4, 19–102.

    Google Scholar 

  • GRYSE, J. J. DE (1926), The morphogeny of certain types of respiratory systems in insect larvae, Trans. R. Soc. Canada, 20, 483–503.

    Google Scholar 

  • HARNISCH, O. (1958), Untersuchungen an den Analkiemen der Larve von Agrion, Biol. Zbl., 77, 300–310.

    Google Scholar 

  • HARTLEY, J. C. (1958), The root-piercing spiracles of the larva of Chrysogaster hirtella Loew (Diptera: Syrphidae) Proc. R. ent. Soc. Lond. (A), 33, 81–87.

    Google Scholar 

  • HASSAN, A. A. G. (1944), The structure and mechanism of the spiracular regulatory mechanism in adult Diptera and certain other groups of insects, Trans. R. ent. Soc. Lond., 94, 105–153.

    Google Scholar 

  • HINTON, H. E. (1947), On the reduction of functional spiracles in the aquatic larvae of the Holometabola, with notes on the moulting process of spiracles, Trans. R. ent. Soc. Lond., 98, 449–473.

    Article  Google Scholar 

  • HINTON, H. E. (1967a), Structure and ecdysial process of the larval spiracles of the Scarabaeoidea, with special reference to those of Lepidoderma, Aust. J. Zool., 15, 947–953.

    Article  Google Scholar 

  • HINTON, H. E. (1967b), On the spiracles of the larvae of the suborder Myxophaga (Coleoptera), Aust. J. Zool, 15, 955–959.

    Google Scholar 

  • HINTON, H. E. (1968), Spiracular gills, Adv. Insect Physiol., 5, 65–162.

    Article  Google Scholar 

  • HINTON, H. E. (1969), Plastron respiration in adult beetles of the suborder Myxophaga, J. Zool. Lond., 159, 131–137.

    Article  Google Scholar 

  • HOULIHAN, D. F. (1969a), Respiratory physiology of the larva of Donacia simplex, a root-piercing beetle, J. Insect Physiol, 15, 1517–1536.

    Google Scholar 

  • HOULIHAN, D. F. (1969b), The structure and behaviour of Notiphila riparia and Erioptera squalida, two root-piercing insects, J. Zool. Lond., 159, 249–267.

    Google Scholar 

  • HOULIHAN, D. F. (1970), Respiration in low oxygen partial pressures: the adults of Donacia simplex that respire from the roots of aquatic plants, J. Insect Physiol., 16, 1607–1622.

    Article  PubMed  CAS  Google Scholar 

  • HOYLE, G. (1960), The action of carbon dioxide gas on an insect spiracular muscle, J. Insect Physiol., 4, 63–79.

    Article  Google Scholar 

  • HRBÁČEK, J. (1950), On the morphology and function of the antennae of the Central European Hydrophilidae (Coleoptera), Trans. R. ent. Soc. Lond., 101, 239–256.

    Google Scholar 

  • KAPOOR, N. N. (1974), Some studies on the respiration of stonefly nymph, Paragnetina media (Walker), Hydrobiologia, 44, 37–41.

    Article  Google Scholar 

  • KAPOOR, N. N. and Zachariah, K. (1973), A study of specialized cells of the tracheal gills of Paragnetina media (Plecoptera), Can. J. Zool, 51, 983–986.

    Article  Google Scholar 

  • KEILIN, D. (1944), Respiratory systems and respiratory adaptations in larvae and pupae of Diptera, Parasitology, 36, 1–66.

    Article  Google Scholar 

  • KEISTER, M. L. (1948), The morphogenesis of the tracheal system of S ciara, J. Morph., 83, 373–423.

    Article  PubMed  CAS  Google Scholar 

  • KEISTER, M. AND BUCK, J. (1974), Respiration: some exogenous and endogenous effects on rate of respiration, In: Rockstein, M. (ed.), The Physiology of Insecta, 2nd edn, Academic Press, New York, 6, 469–509.

    Google Scholar 

  • KOCH, H. J. A. (1938), The absorption of chloride ions by the anal papillae of Diptera larvae, J. exp. Biol., 15, 152–160.

    CAS  Google Scholar 

  • KROGH, A. (1920), Studien über Tracheenrespiration. II, III, Pflügers Arch. ges. Physiol., 179, 95–112.

    Article  CAS  Google Scholar 

  • LEÓNIDE, J.-C. (1963), Formation du pore respiratoire et de la partie proximale du tube respiratoire de la larve de Symmictus costatus Loew. (Diptera, Nemestrinidae) selon des diverses régions du corps de l’hôte, Bull. Soc. zool. France, 87 (1962), 550–558.

    Google Scholar 

  • LEVY, R. I. AND SCHNEIDERMAN, H. A. (1966), Discontinuous respiration in insects. II–IV, J. Insect Physiol., 12, 83–104; 105–121; 465–492.

    Google Scholar 

  • LEWIS, G. W., MILLER, P. L. AND MILLS, P. S. (1973), Neuro-muscular mechanisms of abdominal pumping in the locust, J. exp. Biol., 59, 149–168.

    Google Scholar 

  • LOCKE, M. (1957), The structure of insect tracheae, Q. Jl microsc. Sci., 98, 487–492.

    Google Scholar 

  • LOCKE, M. (1958), The formation of tracheae and tracheoles in Rhodnius prolixus, Q. Jl microsc. Sci., 99, 29–46.

    Google Scholar 

  • LOTZ, G. (1961), Vergleichend morphologische und histologische Untersuchungen an den Stigmen der Lamellicornier-Larven mit Beiträgen zur Entwicklungsgeschichte, Z. Morph Ökol. Tiere, 50, 726–784.

    Article  Google Scholar 

  • LOVERIDGE, J. P. (1968), The control of water loss in Locusta migratoria migratorioides R. & F. II. Water loss through the spiracles, J. exp. Biol., 49, 15–29.

    Google Scholar 

  • MAMMEN, H. (1912), Über die Morphologie der Heteropteren- und Homopterenstigmen, Zool. Jb. (Anat.), 34, 121–178.

    Google Scholar 

  • MAPLE, J. D. (1947), The eggs and first instar larvae of Encyrtidae and their morphological adaptations for respiration, Univ. Calif. Pubis Ent., 8, 25–122.

    Google Scholar 

  • MILL, P. J. (1974), Respiration — aquatic insects, In: Rockstein, M. (ed.), The Physiology of Insecta, 2nd edn, Academic Press, New York, 6, 403–467.

    Google Scholar 

  • MILLER, P. L. (1966a), The supply of oxygen to the active flight muscles of some large beetles, J. exp. Biol., 45, 285–304.

    Google Scholar 

  • MILLER, P. L. (1966b), The regulation of breathing in insects, Adv. Insect Physiol., 3, 279–354.

    Article  Google Scholar 

  • MILLER, P. L. (1974), Respiration — aerial gas transport, In: Rockstein, M. (ed.), The Physiology of Insecta, 2nd edn, Academic Press, New York, 6, 345–402.

    Google Scholar 

  • NUNOME, Z. (1944–51), Studies on the respiration of the silkworm, I–III, Bull. Sericult. Exp. Sta., 12, 17–39

    Google Scholar 

  • NUNOME, Z. (1944–51), Studies on the respiration of the silkworm, I–III Bull. Sericult. Exp. Sta., 12, 41–90

    Google Scholar 

  • NUNOME, Z. (1944–51), Studies on the respiration of the silkworm, I–III J. Sericult. Sci. Japan, 20, 111–127.

    Google Scholar 

  • POPHAM, E. J. (1960), On the respiration of aquatic Hemiptera Heteroptera with special reference to the Corixidae, Proc. zool. Soc. Lond., 135, 209–242.

    Google Scholar 

  • POPHAM, E. J. (1962), A repetition of Ege’s experiments and a note on the efficiency of the physical gill of Notonecta (Hemiptera-Heteroptera), Proc. R. ent. Soc. Lond. (A), 37, 154–160.

    Google Scholar 

  • PRESCOTT, H. W. (1961), Respiratory pore construction in the host by the nemestrinid parasite Neorhynchocephalus sackenii (Diptera), with notes on respiratory tube characters, Ann. ent. Soc. Am., 54, 557–566.

    Google Scholar 

  • RAHN, H. AND PAGANELLI, C. V. (1968), Gas exchange in gas gills of diving insects, Respiration Physiology, 5, 145–164.

    Article  PubMed  CAS  Google Scholar 

  • RITCHER, P. O. (1969a), Spiracles of adult Scarabaeoidea (Coleoptera) and their phylogenetic significance. I. The abdominal spiracles, Ann. ent. Soc. Am., 62, 869–880.

    Google Scholar 

  • RITCHER, P. O. (1969b), Spiracles of adult Scarabaeoidea (Col.) and their phylogenetic significance. II. Thoracic spiracles and adjacent sclerites, Ann. ent. Soc. Am., 62, 1388–1389.

    Google Scholar 

  • SALT, G. (1968), The resistance of insect parasitoids to the defence reactions of their hosts, Biol. Rev., 43, 200–232.

    Article  PubMed  CAS  Google Scholar 

  • SALT, G. (1970), The Cellular Defence Reactions of Insects, Cambridge Univ. Press, Cambridge, 117 pp.

    Book  Google Scholar 

  • SCHNEIDERMAN, H. A. AND SCHECHTER, A. N. (1966), Discontinuous respiration in insects — V, J. Insect Physiol., 12, 1143–1170.

    Article  Google Scholar 

  • SMITH, D. S. (1963), The organization and innervation of the luminescent organ in a firefly, Photuris pennsylvanicus (Coleoptera), J. Cell Biol., 16, 323–359.

    Article  PubMed  CAS  Google Scholar 

  • STOBBART, R. H. (1956), A note on the tracheal system of the Machilidae, Proc. R. ent. Soc. Lond. (A), 31, 34–36.

    Google Scholar 

  • STRIDE, G. O. (1955), On the respiration of an aquatic African beetle, Potamodytes tuberosus Hinton, Ann. ent. Soc. Am., 48, 344–351.

    Google Scholar 

  • THORPE, W. H. (1932), Experiments upon respiration in the larvae of certain parasitic Hymenoptera, Proc. R. Soc. (B), 109, 450–471.

    Article  Google Scholar 

  • THORPE, W. H. (1933), Experiments on the respiration of aquatic and parasitic insect larvae, Trans 5 Congr. int. Ent., 2, 345–351.

    Google Scholar 

  • THORPE, W. H. (1934), The biology and development of Cryptochaetum grandicorne (Diptera), an internal parasite of Guerinia serratulae (Coccidae), Q. Jl microsc. Sci., 77, 273–304.

    Google Scholar 

  • THORPE, W. H. (1941), The biology of Cryptochaetum (Diptera) and Eupelmus (Hymenoptera), parasites of Aspidoproctus (Coccidae) in East Africa, Parasitology, 33, 149–168.

    Article  Google Scholar 

  • THORPE, W. H. (1950), Plastron respiration in aquatic insects, Biol. Rev., 25, 344–390.

    Article  Google Scholar 

  • TONAPI, G. T. (1957), A comparative study of spiracular structure and mechanism in some Hymenoptera, Trans. R. ent. Soc, Lond., 110, 489–520.

    Article  Google Scholar 

  • THORPE, W. H. (1959–60), A comparative study of the respiratory system of some Hymenoptera, Indian J. Ent., 20, 108–120

    Google Scholar 

  • THORPE, W. H. (1959–60), A comparative study of the respiratory system of some Hymenoptera, Indian J. Ent., 20, 203–220

    Google Scholar 

  • THORPE, W. H. (1959–60), A comparative study of the respiratory system of some Hymenoptera, Indian J. Ent., 20, 245–269.

    Google Scholar 

  • VARLEY, G. C. (1937), Aquatic insect larvae which obtain oxygen from the roots of plants, Proc. R. ent. Soc. Lond. (A), 12, 55–60.

    Google Scholar 

  • VLASBLOM, A. G. (1970), The respiratpry significance of the physical gill in some adult insects, Comp. Biochem. Physiol., 36, 377–385.

    Article  Google Scholar 

  • WEBB, J. E. (1946), Spiracle structure as a guide to the phylogenetic relationships of the Anoplura (biting and sucking lice) with notes on the affinities of the mammalian hosts, Proc. zool. Soc. Lond., 116, 49–119.

    Google Scholar 

  • WEIS-FOGH, T. (1964a), Functional design of the tracheal system of flying insects as compared with the avian lung, J. exp. Biol., 41, 207–227.

    CAS  Google Scholar 

  • WEIS-FOGH, T. (1964b), Diffusion in insect wing muscle, the most active tissue known, J. exp. Biol., 41, 229–256.

    PubMed  CAS  Google Scholar 

  • WEIS-FOGH, T. (1967), Respiration and tracheal ventilation in locusts and other flying insects, J. exp. Biol., 47, 561–587.

    PubMed  CAS  Google Scholar 

  • WESENBERG-LUND, C., (1943), Biologie der Süsswasserinsekten, Copenhagen, 682 pp.

    Google Scholar 

  • WHITTEN, J. M. (1955), A comparative morphological study of the tracheal system in larval Diptera. Part I, Q. Jl microsc. Sci., 96, 257–278.

    Google Scholar 

  • WHITTEN, J. M. (1960), The tracheal patterns in selected Diptera Nematocera, J. Morph., 107, 233–257.

    Article  PubMed  CAS  Google Scholar 

  • WHITTEN, J. M. (1972), Comparative anatomy of the tracheal system, A. Rev. Ent., 17, 373–402.

    Article  Google Scholar 

  • WICHARD, W. (1973), Zur Morphogenese des respiratorischen Epithels der Tracheenkiemen bei Larven der Limnephilini Kol. (Insecta, Trichoptera), Z. Zellforsch. mikrosk. Anat., 144, 585–592.

    Article  PubMed  CAS  Google Scholar 

  • WICHARD, W., and Komnick, H. (1971), Zur Feinstruktur der Tracheenkiemen von Glyphotaelius pellucidus (Insecta, Trichoptera), Cytobiologie, 3, 106–110.

    Google Scholar 

  • WHITTEN, J. M. (1974), Structure and function of the respiratory epithelium in the tracheal gills of stonefly larvae, J. Insect. Physiol., 20, 2397–2406.

    Article  Google Scholar 

  • WIGGLESWORTH, V. B. (1930), A theory of tracheal respiration in insects, Proc. R. Soc, (B), 106, 229–250.

    Article  CAS  Google Scholar 

  • WIGGLESWORTH, V. B. (1931), The extent of air in the tracheoles of some terrestrial insects, Proc. R. Soc. (B), 109, 354–369.

    Article  Google Scholar 

  • WIGGLESWORTH, V. B. (1933), The function of the anal gills of the mosquito larva, J. exp. Biol., 10, 16–26.

    CAS  Google Scholar 

  • WIGGLESWORTH, V. B. (1935), The regulation of respiration in the flea, Xenopsylla cheopis Roths. (Pulicidae), Proc. R. Soc. (B), 118, 397–419.

    Article  CAS  Google Scholar 

  • WIGGLESWORTH, V. B. (1953), Surface forces in the tracheal system of insects, Q. Jl microsc. Sci., 94, 507–522.

    Google Scholar 

  • WIGGLESWORTH, V. B. (1959), The role of the epidermal cells in the ‘migration’ of tracheoles in Rhodnius prolixus (Hemiptera), J. exp. Biol., 36, 632–640.

    Google Scholar 

  • WIGGLESWORTH, V. B. (1963), A further function of the air sacs in some insects, Nature, 198, 106.

    Article  Google Scholar 

  • WOLVEKAMP, H. P. (1955), Die physikalische Kieme der Wasserinsekten, Experientia, 11, 294–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 O. W. Richards and R. G. Davies

About this chapter

Cite this chapter

Richards, O.W., Davies, R.G. (1977). The Respiratory System. In: IMMS’ General Textbook of Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6514-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6514-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-15210-8

  • Online ISBN: 978-94-011-6514-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics