Skip to main content

Population Models for Passerine Birds: Structure, Parameterization, and Analysis

  • Chapter

Abstract

Population models have great potential as management tools, as they use information about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Bart, J., and D. S. Robson. 1982. Estimating survivorship when the subjects are visited periodically. Ecology 63: 1078–1090.

    Article  Google Scholar 

  • Beddington, J. R. 1974. Age distribution and the stability of simple discrete time population models. Journal of Theoretical Biology 47: 65–74.

    Article  CAS  Google Scholar 

  • Begon, M., and M. Mortimer. 1981. Population ecology. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Brownie, C., D. R. Anderson, K. P. Burnham, and D. S. Robson. 1985. Statistical inference from band recovery data-a handbook. Second Edition. U. S. Fish and Wildlife Service, Resource Publication 156, Washington, D. C, USA.

    Google Scholar 

  • Bunck, C. M. 1987. Analysis of survival data from telemetry projects. Journal of Raptor Research 21: 132–134.

    Google Scholar 

  • Burnham, K. P., and D. R. Anderson. 1979. The composite dynamic method as evidence for age-specific waterfowl mortality. Journal of Wildlife Management 43: 356–366.

    Article  Google Scholar 

  • Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie, and K. H. Pollock. 1987. Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monograph 5.

    Google Scholar 

  • Caswell, H. 1989. Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Caughley, G. 1977. Analysis of vertebrate populations. John Wiley and Sons, New York, New York,USA.

    Google Scholar 

  • Chu, D. S., and J. B. Hestbeck. 1986. Temporal and geographic estimates of survival and recovery rates for the mallard, 1950 through 1985. U. S. Fish and Wildlife Service, Fish and Wildlife Technical Reports 20, Washington, D. C, USA.

    Google Scholar 

  • Clobert, J., V. Bauchau, A. A. Dhondt, and C. Vansteenwegen. 1987a. Survival of breeding female starlings in relation to brood size. Acta Oecologica 8: 427–433.

    Google Scholar 

  • Clobert, J., and J. D. Lebreton. 1991. Estimation of demographic parameters in bird populations. Pages 75–104 inC. M. Perrins, J. D. Lebreton, and G. J. M. Hirons, editors. Bird population studies: relevance to conservation and management Oxford University Press, Oxford, England

    Google Scholar 

  • Clobert, J., J. D. Lebreton, and D. Allaine. 19876. A general approach to survival rate estimation by recaptures or resightings of marked birds. Ardea 75: 133–142.

    Google Scholar 

  • Clobert, J., C. M. Perrins, R. H. McCleery, and A. G. Gosier. 1988. Survival rate in the great tit Parus majorin relation to sex, age, and immigration status. Journal of Animal Ecology 57: 287–306

    Article  Google Scholar 

  • Clutton-Brock, T. H., editor. 1988. Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Cole, L. C. 1954. The population consequences of life history phenomena. Quarterly Review of Biology 29: 103–137.

    Article  CAS  Google Scholar 

  • Conroy, M. J., and B. K. Williams. 1986. A general methodology for maximum likelihood inference from band-recovery data. Biometrics 40: 739–748.

    Article  Google Scholar 

  • Deevey, E. S., Jr. 1947. Life tables for natural populations of animals. Quarterly Review of Biology 22: 283–314.

    Article  Google Scholar 

  • de Kroon, H., A. Plaisier, J. van Groenendael, and H. Caswell. 1986. Elasticity: the relative contribution of demographics parameters to population growth rate. Ecology 67: 1427–1431.

    Article  Google Scholar 

  • Dobson, A. P. 1990. Survival rates and their relationship to life-history traits in some common British birds. Pages 115–146 inD. M. Power, editor. Current Ornithology, Volume 7. Plenum, New York, New York, USA.

    Google Scholar 

  • Emlen, J.M. 1984. Population biology: the coevolution of population dynamics and behavior. MacMillan, New York, New York, USA.

    Google Scholar 

  • Emlen, J. M., and E. K. Pikitch. 1989. Animal population dynamics: identification of critical components. Ecological Modelling 44: 253–273.

    Article  Google Scholar 

  • Fauth, P. T., D. G. Krementz, and J. B. Hines. 1991. Ectoparasitism and the role of green nesting material in the European starting. Oecologia, in press.

    Google Scholar 

  • Fisher, R. A. 1958. The genetical theory of natural selection. Second edition. Dover, New York, New York, USA.

    Google Scholar 

  • Goodman, D. 1980. Demographic intervention for closely managed populations. Pages 171–196 inM. E. Soulé, and B. A. Wilcox, editors. Conservation biology: an evolutionary ecological perspective. Sinauer Associates, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Haldane, J. B. S. 1955. The calculation of mortality rates from ringing data. Proceedings of the International Ornithological Congress 11: 454–458.

    Google Scholar 

  • Henny, C. 1972. An analysis of the survival rates of selected avian species: with special reference to changes during the modern pesticide era. U. S. Fish and Wildlife Service Wildlife Research Report 1, Washington, D. C, USA.

    Google Scholar 

  • Hensler, G. L. 1986. Estimation and comparison of functions of daily nest survival probabilities using the Mayfield method. Pages 289–301 in B. J. T. Morgan and P. M. North, editors. Statistics in ornithology. Lecture Notes in Statistics 29. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Hensler, G. L., and J. D. Nichols. 1982. The Mayfield method of estimating nesting success: a model, estimators and simulation results. Wilson Bulletin 93: 42–53.

    Google Scholar 

  • Hickey, J. J. 1952. Survival studies of banded birds. U. S. Fish and Wildlife Service Wildlife Research Report 15, Washington, D. C, USA.

    Google Scholar 

  • Johnson, D.H. 1979. Estimating nest success: the Mayfield method and an alternative. Auk 96: 651–661

    Google Scholar 

  • Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both death and immigration — a stochastic model. Biometrika 52: 225–247.

    CAS  Google Scholar 

  • Karr, J. R., J. D. Nichols, M. K. Klimkiewicz, and J. D. Braun. 1990. Survival rates of birds of tropical and temperate forests: will the dogma survive? American Naturalist 136: 277–291.

    Article  Google Scholar 

  • Krementz, D. G., J. D. Nichols, and J. E. Hines. 1989. Postfledging survival of European starlings. Ecology 70: 646–655.

    Article  Google Scholar 

  • Kuno, E. 1974. Sampling error as a misleading artifact in “key factor analysis.” Researches in Population Ecology 13: 28–45.

    Google Scholar 

  • Lande, R. 1988. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia (Berlin) 75: 601–607.

    Article  Google Scholar 

  • Lebreton, J., K. P. Burnham, J. Clobert, and D. R. Anderson. In press. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs.

    Google Scholar 

  • Lebreton, J. D., and J. Clobert. 1991. Bird population dynamics, management, and conservation: the role of mathematical modelling. Pages 105–125 inC. M. Perrins, J. D. Lebreton, G. J. M. Hirons, editors. Bird population studies: relevance to conservation and management. Oxford University Press, Oxford, England.

    Google Scholar 

  • Lebreton, J., G. Hemery, J. Clobert, and H. Coquillart. 1990. The estimation of age-specific breeding probabilities from recaptures or resightings in vertebrate populations. I. Transversal models. Biometrics 46: 609–622.

    Article  Google Scholar 

  • Lefkovitch, L. P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1–18.

    Article  Google Scholar 

  • Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183–212.

    Article  CAS  Google Scholar 

  • Leslie, P. H. 1948a. On the distribution in time of births in successive generations. Journal of the Royal Statistical Society 111: 44–53.

    Google Scholar 

  • Leslie, P. H. 1948b. Some further notes on the use of matrices in population mathematics. Biometrika 35: 213–245.

    Google Scholar 

  • Loery, G., and J. D. Nichols. 1985. Dynamics of a black-capped chickadee population, 1958-1983. Ecology 66: 1195–1203.

    Article  Google Scholar 

  • Loery, G., K. H. Pollock, J. D. Nichols, and J. E. Hines. 1987. Age-specificity of black-capped chickadees survival rates: analysis of capture-recapture data. Ecology 68: 1038–1044.

    Article  Google Scholar 

  • Martin, T. E., and J. J. Roper. 1988. Nest predation and nest-site selection of a western population of the hermit thrush. Condor 90: 51–57.

    Article  Google Scholar 

  • Mayfield, H. 1961. Nesting success calculated from exposure. Wilson Bulletin 73: 255–261.

    Google Scholar 

  • Mayfield, H. 1975. Suggestions for calculating nesting success. Wilson Bulletin 87: 456–466.

    Google Scholar 

  • Mertz, D. 1971. The mathematical demography of the California condor population. American Naturalist 105: 437–453.

    Article  Google Scholar 

  • Meyer, J. S., and M. S. Boyce. In press. Life historical consequences of pesticides and other insults to vital rates. InT. E. Lacher, editor. The population ecology and wildlife toxicology of agricultural pesticide use: a modelling initiative for avian species. Society of Environmental Toxicology and Chemistry Special Publication, Lewis Publishers, Boca Raton, Florida, USA.

    Google Scholar 

  • Michod, R. E., and W. W. Anderson 1980. On calculating demographic parameters from age frequency data. Ecology 61: 265–269.

    Article  Google Scholar 

  • Moller, A. P. 1989. Population dynamics of a declining swallow Hirundo rusticapopulation. Journal of Animal Ecology 58: 1051–1063.

    Article  Google Scholar 

  • Nichols, J. D., G. L. Hensler, and P. W. Sikes, Jr. 1980. Demography of the Everglade kite: implications for population management. Ecological Modelling 9: 215–232

    Article  Google Scholar 

  • Nichols, J. D., B. R. Noon, S. L. Stokes, and J. E. Hines. 1981. Remarks on the use of mark-recapture methodology in estimating avian population size. Studies in Avian Biology 6: 121–136.

    Google Scholar 

  • Noon, B. R., and C. M. Biles. 1990. Mathematical demography of spotted owls in the Pacific northwest. Journal of Wildlife Management 54: 18–27.

    Article  Google Scholar 

  • Pielou, E. C. 1974. Population and community ecology. Gordon and Breach, New York, New York, USA.

    Google Scholar 

  • Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines. 1990. Statistical inference for capture-recapture experiments. Wildlife Monographs 107.

    Google Scholar 

  • Saether, B. E. 1990. Age-specific variation in reproductive performance of birds. Pages 251–284 inD. M. Power, editors, Current Ornithology. Volume 7. Plenum, New York, New York, USA.

    Google Scholar 

  • Seber, G. A. F. 1965. A note on the multiple recapture census. Biometrika 52: 249–259.

    CAS  Google Scholar 

  • Seber, G. A. F. 1982. The estimation of animal abundance and related parameters. Second edition. Griffin, New York, New York, USA.

    Google Scholar 

  • Stenning, M. J., P. H. Harvey, and B. Campbell. 1988. Searching for density-dependent regulation in a population of pied flycatchers Ficedula hypoleucaPallas. Journal of Animal Ecology 57: 307–317.

    Article  Google Scholar 

  • Stromborg, K. L., C. E. Grue, J. D. Nichols, G. R. Hepp, J. E. Hines, and H. C. Bourne. 1988. Postfledging survival of European starlings exposed as nestlings to an organophosphorus insecticide. Ecology 69: 590–601.

    Article  CAS  Google Scholar 

  • Taylor, M., and J. S. Carley. 1988. Life table analysis of age structured populations in seasonal environments. Journal of Wildlife Management 52: 366–373.

    Article  Google Scholar 

  • Temple, S. A., and J. A. Wiens. 1989. Bird populations and environmental changes: can birds be bio-indicators? American Birds 43: 260–270.

    Google Scholar 

  • White, G. C. 1983. Numerical estimation of survival rates from band recovery and biotelemetry data. Journal of Wildlife Management 47: 716–728.

    Article  Google Scholar 

  • White, G. C, and R. A. Garrott. 1990. Analysis of wildlife radio-tracking data. Academic Press, New York, New York, USA.

    Google Scholar 

  • Woolfenden, G. E., and J. W. Fitzpatrick. 1984. The Florida scrub jay. Monographs in Population Ecology 20. Princeton University Press, Princeton, New Jersey, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Noon, B.R., Sauer, J.R. (1992). Population Models for Passerine Birds: Structure, Parameterization, and Analysis. In: McCullough, D.R., Barrett, R.H. (eds) Wildlife 2001: Populations. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2868-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2868-1_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-876-2

  • Online ISBN: 978-94-011-2868-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics