Skip to main content

Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era

  • Chapter
Plant Cell Walls

Abstract

Although the synthesis of cell wall polysaccharides is a critical process during plant cell growth and differentiation, many of the wall biosynthetic genes have not yet been identified. This review focuses on the synthesis of noncellulosic matrix polysaccharides formed in the Golgi apparatus. Dur consideration is limited to two types of plant cell wall biosynthetic enzymes: glycan synthases and glycosyltransferases. Classical means of identifying these enzymes and the genes that encode them rely on biochemical purification of enzyme activity to obtain amino acid sequence data that is then used to identify the corresponding gene. This type of approach is difficult, especially when acceptor substrates for activity assays are unavailable, as is the case for many enzymes. However, bioinformatics and functional genomics provide powerful alternative means of identifying and evaluating candidate genes. Database searches using various strategies and expression profiling can identify candidate genes. The involvement of these genes in wall biosynthesis can be evaluated using genetic, reverse genetic, biochemical, and heterologous expression methods. Recent advances using these methods are considered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AtFUT1:

Arabidopsis thaliana fucosyltransferase 1

EST:

expressed sequence tag

FucT:

fucosyltransferase

GDP-Fuc:

guanosine 5’-diphospo-α-L-fucose

UDP:

uridine 5’-diphosphate

XyG:

xyloglucan

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W. et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Bolscher, J.G., Bruyneel, E.A., Van Rooy, H., Schallier, D.C., Mareel, M.M. and Smets, L.A. 1989. Decreased fucose incorporation in cell surface carbohydrates is associated with inhibition of invasion. Clin. Exp. Metastasis 7: 557–569.

    Google Scholar 

  • Borsig, L., Kleene, R., Dinter, A. and Berger, E.G. 1996. Immunodetection of α 1–3 fucosyltransferase (FucT-V). Eur. J. Cell Biol. 70: 42–53.

    Google Scholar 

  • Breton, C. and Imberty, A. 1999. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 9: 563–571.

    Google Scholar 

  • Breton, C., Driol, R. and Imberty, A. 1996. Sequence alignment and fold recognition of fucosyltransferases. Glycobiology 6: vii–xii.

    Google Scholar 

  • Breton, C., Driol, R. and Imberty, A. 1998a. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8: 1–8.

    Google Scholar 

  • Breton, C., Bettler, E., Joziasse, D. H., Gerernia, R. A. and Imberty, A. 1998b. Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. J. Biochem. 123: 1000–1009.

    Google Scholar 

  • Brett, C.T. and Waldron, K. 1996. Physiology and Biochernistry of Plant Cell Walls, 2 ed., Chapman and Hall, London.

    Google Scholar 

  • Britten, C.J. and Bird, M.J. 1997. Chemical modification of an a 3-fucosyltransferase; definition of amino aeid residues essential for enzyme activity. Biochim. Biophys. Acta 1334: 57–64.

    Google Scholar 

  • Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M. Jr. et al. 2000. Knowledge-based analysis of rnicroarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 97: 262–267.

    Google Scholar 

  • Brummell, D.A., Camirand, A. and Maclachlan, G.A. 1990. Differential distribution of xyloglucan transferases in pea Golgi dictyosomes and secretory vesicles. J. Cell Sci. 96: 705–710.

    Google Scholar 

  • Buckeridge, M.S., Vergara, C.E. and Carpita, N. C.1999. The mechanism of synthesis of a mixed-linkage (1→3), (1→4)-β-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120: 1105–1116.

    Google Scholar 

  • Butler, T. and Elling, L. 1999. Enzymatic synthesis of nucleotide sugars. Glycoconjugate J. 16: 147–159.

    Google Scholar 

  • Carnirand, A., Brummell, D. and MacLachlan, G.A. 1987. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of stern stern cells. Plant Physiol. 84: 753–756

    Google Scholar 

  • Campbell, J.A., Davies, G.J., Bulone, V. and Henrissat, B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929–939.

    Google Scholar 

  • Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Google Scholar 

  • Colley, K.J. 1997. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7: 1–13.

    Google Scholar 

  • Delmer, D. 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245–276.

    Google Scholar 

  • Delmer, D.P. and Stone, B.A. 1988. Biosynthesis ofplant cell walls. In P.K. Stumpf and E.E. Conn (Eds.) Biochemistry of Plants: A Comprehensive Treatise, vol. 14, Academic Press, New York, pp. 373–419.

    Google Scholar 

  • Doong, R.L. and Mohnen, D. 1998. Solubilization and characterization of a galacturonosyltransferase that synthesizes the pectic polysaccharide homogalacturonan. Plant J. 13: 363–374.

    Google Scholar 

  • Douglas, C.M., Foor, F., Marrinan, J.A., Morin, N., Nielsen, J.B., Dahl, A.M. et al. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-β-D-glucan synthase. Proc. Natl. Acad. Sci. USA 91: 12907–12911

    Google Scholar 

  • Driouich, A., Faye, L. and Staehelin, L.A 1993. The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem. Sci. 18: 210–214.

    Google Scholar 

  • Edwards, M., Bulpin, P.V., Dei, I.C.M. and Reid, I.S. 1989. Biosynthesis of legume-seed galactomannans in vitro. Planta 178: 41–51.

    Google Scholar 

  • Edwards, M., Scott, C., Gidley, M.J. and Reid, I.S. 1992. Control of mannose/galactose ratio during galactomannan formation in developing legurne seeds. Planta 187: 67–74.

    Google Scholar 

  • Edwards, M.E., Dickson, C.A, Chengappa, S., Sidebottom, C., Gidley, M.J. and Reid, I.S. 1999. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J. 19: 691–697.

    Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.

    Google Scholar 

  • Ernst, L.K., Rajan, V.P., Larsen, R.D., Ruff, M.M. and Lowe, J.B. 1989. Stable expression of blood group H determinants and GDP-L-fucose: β-D-galactoside 2-α-L-fucosyltransferase in mouse cells after transfection with human DNA. J. Biol. Chem. 264: 3436–3447.

    Google Scholar 

  • Ewing, R.M., Kahla, A.B., Poirot, O., Lopez, F., Audic, S. and Claverie, I.M. 1999. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 9: 950–959.

    Google Scholar 

  • Faik, A., Chileshe, C., Sterling, J. and Maclachlan, G. 1997. Xyloglucan galactosyl-and fucosyltransferase activities from pea epicotyl microsomes. Plant Physiol. 114: 245–254.

    Google Scholar 

  • Faik, A., Bar Peled, M., DeRocher, A.E., Zeng, W., Perrin, R.M., Wilkerson, C. et al. 2000. Biochemical characterization and molecular cloning of an α-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J. Biol. Chem. 275: 15082–15089.

    Google Scholar 

  • Farkas, V. and Maclachlan, G. 1988. Fucosylation of exogenous xyloglucans by pea microsomal membranes. Arch. Biochem. Biophys. 264: 48–53.

    Google Scholar 

  • Field, M.C. and Wainwright, L.J. 1995. Molecular cloning of eukaryotic glycoprotein and glycolipid glycosyltransferases: a survey. Glycobiology 5: 463–472.

    Google Scholar 

  • Fujino, T., Sone, Y., Mitsuishi, Y. and Itoh, T. 2000. Characterization of cross-links between cellulose microfibrils, and their occurrence during elongation growth in pea epicotyl. Plant Cell Physiol. 41: 486–494.

    Google Scholar 

  • Fukuda, M., Bierhuizen, M.F. and Nakayama, I. 1996. Expression cloning of glycosyltransferases. Glycobiology 6: 683–689.

    Google Scholar 

  • Gastinei, L.N., Cambillau, C. and Boume, Y. 1999. Crystal structures of the bovine β4-galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18: 3546–3557.

    Google Scholar 

  • Ge, Z., Chan, N.W., Palcic, M.M. and Taylor, D.E. 1997. Cloning and heterologous expression of an a 1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J. Biol. Chem. 272: 21357–21363.

    Google Scholar 

  • Geremia, R.A., Petroni, E.A., Ielpi, L. and Henrissat, B. 1996. Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic α-mannosyltransferases. Biochem J. 318: 133–138.

    Google Scholar 

  • Gibeaut, D.M. 2000. Nucleotide sugars and glycosyltransferases for synthesis of cell wall matrix polysaccharides. Plant Physiol. Biochem. 38: 69–80.

    Google Scholar 

  • Gibeaut, D.M. and Carpita, N.C. 1994. Biosynthesis of plant cell wall polysaccharides. FASEB J. 8: 904–915.

    Google Scholar 

  • Halgier, C.H., Ivanova-Datcheva, M., Hogan, P.S., Salnikov, V.V., Hwang, S., Martin, L.K. and Delmer, D.P. 2001. Carbon partitioning to cellulose synthesis. Plant Mol. Biol., this issue.

    Google Scholar 

  • Hanna, R., Brummell, D.A., Camirand, A., Hensel, A., Russell, E.F. and Maclachlan, G.A. 1991. Solubilization and properties of GDP-fucose: xyloglucan 1,2-α-L-fucosyltransferase from pea epicotyl membranes. Arch. Biochem. Biophys. 290: 7–13.

    Google Scholar 

  • Hayashi, T. 1989. Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139–168.

    Google Scholar 

  • Henrissat, B., Coutinho, P. and Davies, G.J. 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol., this issue.

    Google Scholar 

  • Hirschberg, C.B., Robbins, P.W. and Abeijon, C. 1998. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 67: 49–69.

    Google Scholar 

  • Imberty, A., Monier, C., Bettler, E., Morera, S., Freemont, P., Sippl, M. et al. 1999. Fold recognition study of α3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain. Glycobiology 9: 713–722.

    Google Scholar 

  • Kapitonov, D. and Yu, R.K. 1999. Conserved domains of glycosyltransferases. Glycobiology 9: 961–978.

    Google Scholar 

  • Kimura, H., Kudo, T., Nishihara, S., Iwasaki, H., Shinya, N., Watanabe, R. et al. 1995. Murine monoclonal antibody recognizing human α(1,3/1,4) fucosyltransferase. Glycoconjugate J. 12: 802–812.

    Google Scholar 

  • Kleene, R. and Berger, E.G. 1993. The molecular and cell biology of glycosyltransferases. Biochim. Biophys. Acta. 1154: 283–325.

    Google Scholar 

  • Krysan, P.J., Young, J.C., Tax, F. and Sussman, M.R. 1996. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc. Natl. Acad. Sci. USA 93: 8145–8150.

    Google Scholar 

  • Krysan, P.J., Young, J.C., Tax, F. and Sussman, M.R. 1996. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc. Natl. Acad. Sci. USA 93: 8145–8150.

    Google Scholar 

  • Kukowska-Latallo, J.F., Larsen, R.D., Nair, R.P. and Lowe, J.B. 1990. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/1,4)fucosyltransferase. Genes Dev. 4: 1288–1303.

    Google Scholar 

  • Larsen, R.D., Ernst, L.K., Nair, R.P. and Lowe, J.B. 1990. Molecular cloning, sequence, and expression of a human GDP-Lfucose: β-D-galactoside 2-α-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc. Natl. Acad. Sci. USA 87: 6674–6678.

    Google Scholar 

  • Leiter, H., Mucha, I., Staudacher, E., Grimm, R., Glossl, J. and Altmann, F. 1999. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc α 1,3-fucosyltransferase from mung beans. J. Biol. Chem. 274: 21830–21839.

    Google Scholar 

  • Machamer, C.E. 1993. Targeting and retention of Golgi membrane proteins. Curr. Opin. Cell Biol. 5: 606–612.

    Google Scholar 

  • Maclachlan, G., Levy, B. and Farkas, V. 1992. Acceptor requirements for GDP-fucose:xyloglucan 1,2-α-L-fucosyltransferase activity solubilized from pea epicotyl membranes. Arch. Biochem. Biophys. 294: 200–205.

    Google Scholar 

  • Martin, S.L., Edbrooke, M.R., Hodgman, T.C., van den Eijnden, D.H. and Bird, M.I. 1997. Lewis X biosynthesis in Helicobacter pylori. Molecular cloning of an α(1,3)-fucosyltransferase gene. J. Biol. Chem. 272: 21349–1356.

    Google Scholar 

  • Masibay, A.S., Balaji, P.V., Boeggeman, E.E. and Qasba, P.K. 1993. Mutational analysis of the Golgi retention signal of bovine β-1,4-galactosyltransferase. J. Biol. Chem. 268: 9908–9916.

    Google Scholar 

  • Matthysse, A.G., Thomas, D.L. and White, A.R. 1995a. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J. Bact. 177: 1076–1081.

    Google Scholar 

  • Matthysse, A.G., White, S. and Lightfoot, R. 1995b. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J. Bact. 177: 1069–1075.

    Google Scholar 

  • McCormick, C., Duncan, G., Goutsos, K.T. and Tufaro, F. 2000. The putative tumor suppressors EXTI and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc. Natl. Acad. Sci. USA 97: 668–673.

    Google Scholar 

  • McCormick, C., Leduc, Y., Martindale, D., Mattison, K., Esford, L.E., Dyer, A.P. and Tufaro, F. 1998. The putative tumoor suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genet. 19: 158–161.

    Google Scholar 

  • Mengeling, B.J. and Turco, S.J. 1998. Microbial glycoconjugates. Curr. Opin. Struct. Biol. 8: 572–577.

    Google Scholar 

  • Mohnen, D. 1999. Biosynthesis of pectins and galactomannans. In: P.B. M. (Ed.) Carbohydrates and their Derivatives Including Tannins, Cellulose, and Related Lignins, vol. 3. Elsevier, Amsterdam, pp. 497–527.

    Google Scholar 

  • Mollicone, R, Cailleau, A. and Oriol, R 1995. Molecular genetics of H, Se, Lewis and other fucosyltransferase genes. Transfus. Clin. Biol. 2: 235–242.

    Google Scholar 

  • Moore, P.J., Swords, K.M., Lynch, M.A. and Staehelin, L.A 1991. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. J. Cell Biol. 112: 589–602.

    Google Scholar 

  • Narimatsu, H., Iwasaki, H., Nishihara, S., Kimura, H., Kudo, T., Yamauchi, Y. and Hirohashi, S. 1996. Genetic evidence for the Lewis enzyme, which synthesizes type-1 Lewis antigens in colon tissue, and intracellular localization of the enzyme. Cancer Res. 56: 330–338.

    Google Scholar 

  • Natsuka, S., Gersten, K.M., Zenita, K., Kannagi, R and Lowe, J.B. 1994. Molecular cloning of a cDNA encoding a novel human leukocyte α-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant. J. Biol. Chem. 269: 16789–16794.

    Google Scholar 

  • Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L. and Breton, C. 1999. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9: 323–334.

    Google Scholar 

  • Page, R.D.M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12: 357–358.

    Google Scholar 

  • Pauly, M., Albersheim, P., Darvill, A. and York, W.S. 1999. Molecular domains of the celluloselxyloglucan network in the cell walls of higher plants. Plant J. 20: 629–639.

    Google Scholar 

  • Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P. and Stalker, D.M. 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642.

    Google Scholar 

  • Perrin, R.M., DeRocher, A.E., Bar Peled, M., Zeng, W., Norambuena, L., Orellana, A. et al. 1999. Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284: 1976–1979.

    Google Scholar 

  • Potikha, T. and Delmer, D.P. 1995. A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J. 7: 453–460.

    Google Scholar 

  • Puhlmann, J., Bucheli, E., Swain, M.J., Dunning, N., Albersheim, P., Darvill, A.G. and Hahn, M.G. 1994. Generation of monoclonal antibodies against plant cell-wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal α(1→2)-linked fucosyl-containing epitope. Plant Physiol. 104: 699–710.

    Google Scholar 

  • Quesada, V.D., Fellay, R., Nasim, T., Viprey, V., Borger, U., Prorne, J.C. et al. 1997. Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase. J. Bact. 179: 5087–5093.

    Google Scholar 

  • Quinto, C., Wijfjes, A.H.M., Bloemberg, G.V., Blok Tip, L., Lopez Lara, I.M., Lugtenberg, B.J. et al. 1997. Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc. Natl. Acad. Sci. USA 94: 4336–4341.

    Google Scholar 

  • Reid, J.S. and Edwards, M. 1995. Galactomannans and other cell wall storage polysaccharides in seeds. In: A.M. Stephen (Ed.) Food Polysaccharides and their Applications, Marcel Dekker, New York, pp. 155–186.

    Google Scholar 

  • Reid, J.S.G., Edwards, M., Gidley, M.J. and Clark, A.H. 1995. Enzyme specificity in galactomannan biosynthesis. Planta 195: 489–495.

    Google Scholar 

  • Reiter, W.D., Chapple, C. and Somerville, C.R. 1997. Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12: 335–345.

    Google Scholar 

  • Richmond, T.A. and Somerville, C.R. 2001. Integrative approaches to determining Csl function. Plant Mol. Biol., this issue.

    Google Scholar 

  • Saxena, I.M. and Brown, R.M.J. 1995. Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J. Bact. 177: 5276–5283.

    Google Scholar 

  • Saxena, I.M., Brown, R.M.J., Fevre, M., Gerernia, R.A. and Henrissat, B. 1995. Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J. Bact. 177: 1419–1424.

    Google Scholar 

  • Scheller, H.V., Doong, R.L., Ridley, B.L. and Mohnen, D. 1999. Pectin biosynthesis: a solubilized α 1,4-galacturonosyltransferase from tobacco catalyzes the transfer of galacturonic aeid from UDP-galacturonic acid onto the non-reducing end ofhomogalacturonan. Planta 207: 512–517.

    Google Scholar 

  • Shah Reddy, I., Kessel, D.H., Chou, T.H., Mirchandani, I. and Khilanani, U. 1982. Plasma fucosyltransferase as an indicator of imminent blastic crisis. Am. J. Hematol. 12: 29–37.

    Google Scholar 

  • Sherwood, A.L., Nguyen, A.T., Whitaker, J.M., Macher, B.A., Stroud, M.R. and Holmes, E.H. 1998. Human α 1,3/4-fucosyltransferases. III. A Lys/ Arg residue located within the α 1,3-FucT motif is required for activity but not substrate binding. J. Biol. Chem. 273: 25256–25260.

    Google Scholar 

  • Smythe, C. and Cohen, P. 1991. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur. J. Biochem. 200: 625–631.

    Google Scholar 

  • Standal, R., Iversen, T.G., Coucheron, D.H., Fjaervik, E., Blatny, J.M. and Valla, S. 1994. A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J. Bact. 176: 665–672.

    Google Scholar 

  • Staudacher, E., Altmann, F., Wilson, I.B. and Marz, L. 1999. Fucose in N-glycans: from plant to man. Biochim. Biophys. Acta 1473: 216–236.

    Google Scholar 

  • Strasser, R., Mucha, J., Schwihla, H., Altmann, F., Glossl, J. and Steiukellner, H. 1999. Molecular cloning and characterization of cDNA coding for β 1, 2N-acetylglucosarninyltransferase I (GIcNAc-TI) from Nicotiana tabacum. Glycobiology 9: 779–785.

    Google Scholar 

  • Strasser, R., Mucha, J., Mach, L., Altmann, F., Wilson, I.B., Glossl, J. and Steinkellner, H. 2000. Molecular cloning and functional expression of β 1, 2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett. 472: 105–108.

    Google Scholar 

  • Takahashi, T., Ikeda, Y., Tateishi, A., Yamaguchi, Y., Ishikawa, M. and Taniguchi, N. 2000. A sequence motif involved in the donor substrate binding by α 1,6-fucosyltransferase: the role of the conserved arginine residues. Glycobiology 10: 503–510.

    Google Scholar 

  • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E. et al. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96: 2907–2912.

    Google Scholar 

  • Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R. and Turner, S.R. 1999. The irregular xylem3 locus of arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769–779.

    Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, E., Jeanmougin, E. and Higgins, D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876–4882.

    Google Scholar 

  • Turner, S.R. and Somerville, C.R. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: 689–701.

    Google Scholar 

  • Turner, S., Taylor, N. and Jones, L. 2001. Mutations of the secondary wall. Plant Mol. Biol., this issue.

    Google Scholar 

  • Vergara, C.E. and Carpita, N.C. 2001. Mixed-linkage β-glucan synthase and the CesA gene family in cereals. Plant Mol. Biol., this issue.

    Google Scholar 

  • Weiser, M.M. and Wilson, J.R. 1981. Serum levels of glycosyltransferases and related glycoproteins as indicators of cancer: biological and clinical implications. Crit. Rev. Clin. Lab. Sci. 14: 189–239.

    Google Scholar 

  • Weston, B.W., Nair, R.P., Larsen, R.D. and Lowe, J.B. 1992. Isolation of a novel human α (1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group α (1,3/1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities. J. Biol. Chem. 267: 4152–4160.

    Google Scholar 

  • White, A.R., Xin, Y. and Pezeshk, V. 1993. Xyloglucan glucosyltransferase in Golgi membranes from Pisum sativum (pea). Biochem. J. 294: 231–238.

    Google Scholar 

  • Whitfield, C. 1995. Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol. 3: 178–185.

    Google Scholar 

  • Wiggins, C.A. and Munro, S.L. 1998. Activity of the yeast MNNI α1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl. Acad. Sci. USA 95: 7945–7950.

    Google Scholar 

  • Wulff, C., Norambuena, L. and Orellana, A. 2000. GDP-fucose uptake into the Golgi apparatus during xyloglucan biosynthesis requires the activity of a transporter-like protein other than the UDP-glucose transporter. Plant Physiol. 122: 867–877.

    Google Scholar 

  • Xu, Z., Vo, L. and Macher, B.A. 1996. Structure-function analysis of human α 1,3-fucosyltransferase. Amino acids involved in acceptor substrate specificity. J. Biol. Chem. 271: 8818–8823.

    Google Scholar 

  • Zhang, Z., Schaffer, A.A., Miller, W, Madden, T.L., Lipman, D.J., Koonin, E.V. and Altschul, S.P. 1998. Protein sequence similarity searches using patterns as seeds. Nucl. Acids Res. 26: 3986–3990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perrin, R., Wilkerson, C., Keegstra, K. (2001). Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. In: Carpita, N.C., Campbell, M., Tierney, M. (eds) Plant Cell Walls. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0668-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0668-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3861-4

  • Online ISBN: 978-94-010-0668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics