Skip to main content

Copper complexes in the treatment of experimental inflammatory conditions: inflammation, ulcers and pain

  • Chapter
Copper and Zinc in Inflammation

Part of the book series: Inflammation and Drug Therapy Series ((IDTH,volume 4))

Abstract

Copper, like sodium, potassium, magnesium, calcium, iron, zinc, chromium, vanadium, and manganese, is an essential metalloelement and as such it is required by all human cells for normal metabolism1. However, some cells have greater metabolic needs than others and tissue content reflects this fact. Amounts of copper found in various body tissues and fluids of individuals, who died sudden accidental deaths2,3, are shown in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Underwood, EJ (1977). Trace Elements in Human and Animal Nutrition, 3rd edn. (New York: Academic Press)

    Google Scholar 

  2. Tipton, IH and Cook, MJ (1963). Trace elements in human tissue. II: Adult subjects from the United States Health Phys, 1, 103–145

    Article  Google Scholar 

  3. Iyengar, GV, Kollmer, WE and Bowen, HJM (1978). The Elemental Composition of Tissue and Body Fluids. (New York: Springer)

    Google Scholar 

  4. May, PM, Linder, PW and Williams, DR (1976). Ambivalent effect of protein binding on computed distribution of metal ions complexed by ligands in blood plasma. Experientia, 32, 1492–1493

    Article  PubMed  CAS  Google Scholar 

  5. Boyadzhyan, AS (1985). Purification of dopamine-β-monoxygenase and the extremely acidic copper-containing protein from the adrenal medulla: the extremely acidic copper-containing protein as an electron donor for dopamine-β-monooxygenase. Biochemistry, 50, 75–81

    Google Scholar 

  6. Frieden, E (1986). Perspectives on copper biochemistry. Clin Physiol Biochem, 4, 11–19

    PubMed  CAS  Google Scholar 

  7. O’Dell, BL (1976). Biochemistry and physiology of copper in vertebrates. In Prasad, AS and Oberleas, D (eds), Trace Elements in Human Health and Disease, Vol.I, Zinc and Copper, 391–413 (New York: Academic Press)

    Google Scholar 

  8. McCord, JM and Fridovich, I (1969). Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem, 244, 6049–6055

    PubMed  CAS  Google Scholar 

  9. Fridovich, I (1986). Biological effects of the superoxide radical. Arch Biochem Biophys, 247, 1–11

    Article  PubMed  CAS  Google Scholar 

  10. Hamilton, GA (1981). Oxidases with monocopper reactive sites. In Spiro, TG (ed), Copper Proteins, 193–218 (New York: Wiley)

    Google Scholar 

  11. Anonymous (1985). Newly found roles for copper. Nutr Rev, 43, 117–119

    Google Scholar 

  12. Marklund, S, Holme, E and Hellner, L (1982). Superoxide dismutase in extracellular fluids. Clin Chem Acta, 126, 41–51

    Article  CAS  Google Scholar 

  13. Marklund, S (1984). Extracellular-superoxide dismutase in human tissues and human cell-lines. J Clin Acta, 74, 1398–1403

    CAS  Google Scholar 

  14. Sorenson, JRJ, Oberley, LW, Crouch, RK and Kensler, TW (1984). Pharmacologic activities of SOD-like copper complexes. In Bors, W, Saran, M and Tait, D (eds), Oxygen Radicals in Chemistry and Biology, 821–830 (Berlin: Walter de Gruyter and Co)

    Chapter  Google Scholar 

  15. Sorenson, JRJ (1976). The antiinflammatory activities of copper complexes. In Siegel, H (ed), Metal Ions in Biological Systems, 77–124 (New York: Marcel Dekker)

    Google Scholar 

  16. Davenport, HC (1982). Physiology of the Digestive Tract, 5th edn, 132–133 (Chicago: Year Book Medical Publishers)

    Google Scholar 

  17. Weiss, KC and Linder, MC (1985). Copper transport in rats involving a new plasma protem. Am J Physiol, 249, E77-E88

    CAS  Google Scholar 

  18. Sorenson, JRJ, Oberley, LW, Kishore, V, et al. (1984). Copper complexes: a physiologic approach to the treatment of ‘inflammatory diseases’. Inorg Chim Acta, 91, 285–294

    Article  CAS  Google Scholar 

  19. Sorenson, JRJ and Hangarter, W (1977). Treatment of rheumatoid and degenerative diseases with copper complexes. Inflammation, 2, 217–238

    Article  PubMed  CAS  Google Scholar 

  20. Sorenson, JRJ (1976). Copper complexes as possible active forms of the antiarthritic agents. J Med Chem, 19, 135–148

    Article  PubMed  CAS  Google Scholar 

  21. Sorenson, JRJ (1978). Copper complexes, a unique class of antiarthritic drugs. Prog Med Chem, 15, 211–260

    Article  PubMed  CAS  Google Scholar 

  22. Sorenson, JRJ, Rolniak, TM and Chang, LW (1984). Preliminary chronic toxicity study of copper aspirinate. Inorg Chim Acta, 91, L31–34

    Article  CAS  Google Scholar 

  23. Okuyama, S, Hashimoto, S, Aihara, H, et al. (1987). Copper complexes of non-steroidal antiinflammatory agents: analgestic activity and possible opioid receptor activation. Agents and Actions, 21, 130–144

    Article  CAS  Google Scholar 

  24. Sorenson, JRJ, Ramakrishma, K and Rolniak, TM (1982). Actiulcer activity of D-penicillamine copper complexes. Agents and Actions, 12, 408–4111

    Article  PubMed  CAS  Google Scholar 

  25. Kishore, V, Rolniak, TM, Ramakrishma, K and Sorenson, JRJ (1982). The antiulcer activities of copper complexes. In Sorenson, JRJ (ed), Inflammatory Diseases and Copper, 363–373 (Clifton, NJ: Humana Press)

    Google Scholar 

  26. West, GB (1982). The copper problem and amino acids. In Sorenson, JRJ (ed), Inflammatory Diseases and Copper, 319–327 (Clifton, NJ: Humana Press)

    Google Scholar 

  27. Marietta, F, Rizzarelli, E, Mangiameli, A, et al. (1977). Atti XXI Congress Naz Soc Ital Gastroenterol, Bologna, 1977; Rendic Gastroenterol, 9 (Suppl 1) 35

    Google Scholar 

  28. Alberghina, M, Brogna, A, Mangiamelli, J, et al. (1982). Copper (II) complexes of amino acids: gastric acid anti-secretory activity in rats. Il Farmaco, 12, 805–814

    Google Scholar 

  29. Hayden, LJ, Thomas, C and West, GB (1978). Inhibitors of gastric lesions in the rat. I Pharm Pharmacol, 30, 244–246

    CAS  Google Scholar 

  30. West, GB (1982). Testing for drugs inhibiting the formation of gastric ulcers. J Pharmacol Methods, 8, 33–37

    Article  PubMed  CAS  Google Scholar 

  31. Townsend, SF and Sorenson, JRJ (1981). Effect of copper aspirinate on regeneration of gastric mucosa following surgical lesions. In Rainsford, KD, Brune, K and White-house, MW (eds), Trace Elements in the Pathogenesis and Treatment of Inflammatory Conditions, 389–398 (Basel: Birkhauser Verlag)

    Google Scholar 

  32. Kendall, DA, Ferkany, JW and Enna, SJ (1980). Properties of 3H-cimetidine binding in rat brain membranes. Fed Proc, 39, 390

    Google Scholar 

  33. Kendall, DA, Ferkany, JW and Enna, SJ (1980). Properties of H-cimetidine binding in rat brain membrane fractions. Life Sci, 26, 1293–1302

    Article  PubMed  CAS  Google Scholar 

  34. Kawai, M, Nomura, Y and Segawa, T (1984). Elevation of [3H]cimetidine binding by CuCl2 in brain membranes of rats. Neurochem Int, 6, 563–568

    Article  PubMed  CAS  Google Scholar 

  35. Jande, MB and Sharma, SC (1986). The effect of cupric sulfate on compound 48/80 and concanavalin-A induced release of histamine from rat peritoneal mast cells. Br J Pharmacol, 89, 570P

    Google Scholar 

  36. Boyle, E, Freeman, PC, Goudie, AC et al. (1976). Role of copper in preventing gastrointestinal damage by acidic anti-inflammatorydrugs. J Pharm Pharmacol, 28, 865–868

    Article  PubMed  CAS  Google Scholar 

  37. Lee, RE and Lands, WEM (1972). Cofactors in biosynthesis of prostaglandins F1-alpha and F2-alpha. Biochim Biophys Acta, 260, 203–211

    PubMed  CAS  Google Scholar 

  38. Maddox, IS (1973). Role of copper in prostaglandin synthesis. Biochim Biophys Acta, 306, 74–81

    PubMed  CAS  Google Scholar 

  39. Vargaftig, BB, Tranier, Y and Chignard, M (1975). Blockade by metal complexing agents and by catalase of effects of arachidonic acid on platelets-relevance to study of antiinflammatory mechanisms. Eur J Pharmacol, 33, 19–29

    Article  PubMed  CAS  Google Scholar 

  40. Swift, A, Karmazyn, M, Horrobin, DF et al. (1978). Low prostaglandin concentrations cause cardiac rhythm disturbances: effect reversed by low levels of copper or chloroquine. Prostaglandins, 15, 651–657

    Article  PubMed  CAS  Google Scholar 

  41. Cunnane, SC, Zinner, H, Horrobin, DF et al. (1979). Copper inhibits pressor responses to noradrenaline but not potassium: interactions with prostaglandins E1, E2 and I2 and penicillamine. Can J Physiol Pharmacol, 57, 35–40

    Article  PubMed  CAS  Google Scholar 

  42. Brigelius, R, Spottl, R, Bors, W et al. (1974). Superoxide dismutase activity of low molecular weight Cu2 plus-chelates studied by pulse radiolysis. FEBS Lett, 47, 72–75

    Article  PubMed  CAS  Google Scholar 

  43. Brigelius, R, Hartman, HJ, Bors, W et al. (1975). Superoxide dismutase activity of Cu(Tyr)2, and Cu,Co-Erythrocuprein. Hoppe-Seylers Z Physiol Chem, 356, 739–745

    Article  PubMed  CAS  Google Scholar 

  44. Paschen, E and Weser, U (1975). Problems concerning the biological action of superoxide dismutase (erythrocuprein). Hoppe Seylers Z Physiol Chem, 356, 727–737

    Article  PubMed  CAS  Google Scholar 

  45. DeAlvare, LR, Goda, K and Kimura, T (1976). Mechanisms of superoxide anion scavenging reaction by bis(salicylato)copper(II) complex. Biochem Biophys Res Commun, 69, 687–694

    Article  PubMed  CAS  Google Scholar 

  46. Weser, U, Richter, C, Wendel, A and Younes, M (1978). Reactivity of antiinflammatory and superoxide dismutase active Cu(II)-salicylates. Bioinorg Chem, 8, 201–213

    Article  PubMed  CAS  Google Scholar 

  47. Younes, M and Weser, U (1977). Superoxide dismutase activity of copper-penicil-lamine: possible involvement of Cu(I) stabilized sulfur radical. Biochem Biophys Res Commun, 78, 1247–1253

    Article  PubMed  CAS  Google Scholar 

  48. Lengfelder, E and Elstner, EF (1978). Determination of the superoxide dismutasing activity of D-penicillamine copper. Hoppe-Seyler’s Z Physiol Chem, 359, 751–757

    CAS  Google Scholar 

  49. Lengfelder, E, Fuchs, C, Younes, M and Weser, U (1979). Functional aspects of the superoxide dismutative action of Cu-penicillamine. Biochim Biophys Acta, 567, 492–502

    PubMed  CAS  Google Scholar 

  50. Richardson, T (1976). Salicylates, copper complexes, free radicals, and arthritis. J Pharm Pharmacol, 28, 666

    Article  PubMed  CAS  Google Scholar 

  51. Craven, PA, Pfanstiel, J and DeRubertis, FR (1986). Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J Clin Invest, 77, 850–859

    Article  CAS  Google Scholar 

  52. Harris, ED, DeSilvestro, RA and Balthrop, JE (1982). Lysyl oxidase, a molecular target of copper. In Sorenson, JRJ (ed), Inflammatory Diseases and Copper, 183–198 (Clifton, NJ: Humana Press)

    Google Scholar 

  53. Williams, DA, Walz, DT and Foye, WO (1976). Synthesis and biological evaluation of tetrakis-µ-Acetylsalicylatodicopper(II). J Pharm Sci, 65, 126–128

    Article  PubMed  CAS  Google Scholar 

  54. Milanino, R, Cassini, A, Franco, L et al. (1985). Copper metabolism in the acute inflammatory process and its possible significance for a novel approach to the therapy of inflammation. Int J Tiss Res, VII, 469–474

    Google Scholar 

  55. Milanino, R, Conforti, A, Franco, L et al. (1985). Copper and inflammation — a possible rationale for the pharmacological manipulation of inflammatory disorders. Agents and Actions, 16, 504–513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sorenson, J.R.J. (1989). Copper complexes in the treatment of experimental inflammatory conditions: inflammation, ulcers and pain. In: Milanino, R., Rainsford, K.D., Velo, G.P. (eds) Copper and Zinc in Inflammation. Inflammation and Drug Therapy Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2619-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2619-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7682-1

  • Online ISBN: 978-94-009-2619-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics