Skip to main content

Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Toxins represent one of the fastest evolving types of protein to be found in animal systems, sharing many of their features with other protein families that respond to extrinsic factors, such as those involved in immunity, and detecting and responding to the environment in which they live. However, studies on toxin genes have been lagging behind those on other gene families as until very recently, no fully sequenced genomes from venomous animals have been available. In this chapter, the molecular forces acting on toxin gene sequences are compared to those acting on other non-toxin genes, addressing in particular several features that have been stressed in the toxinological literature, i.e., their hypervariability, accelerated evolution, and apparent focal mutagenesis centering on the active site of the toxins. The accepted paradigm that the birth-and-death model underlies toxin multigene family evolution is challenged by studies that show both concerted evolution and birth-and-death can give rise to similar patterns following gene duplication and that both models may operate simultaneously. Much of the dynamics of gene duplication and the fate of duplicated genes seem to depend on the genomic and biological context in which they occur. Therefore, there is no reason to expect toxin-encoding genes from diverse animal groups to show common mechanisms of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenas M. Advances in computer simulation of genome evolution: Toward more realistic evolutionary genomics analysis by Approximate Bayesian Computation. J Mol Evol. 2015;80(3–4):189–92.

    Article  CAS  PubMed  Google Scholar 

  • Arguello JR, Connallon T. Gene duplication and ectopic gene conversion in Drosophila. Genes. 2011;2(1):131–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balakirev ES, Ayala FJ. Pseudogenes: are they “junk” or functional DNA? Ann Rev Genet. 2003;37:123–51.

    Article  CAS  PubMed  Google Scholar 

  • Bazykin GA, Kondrashov AS. Major role of positive selection in the evolution of conservative segments of Drosophila proteins. Proc R Soc B. 2012;279(1742):3409–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian DC. Evolutionary dynamics of plant R-genes. Science 2001;292:2281–2285.

    Google Scholar 

  • Bergthorsson U, Andersson DI, Roth JR. Ohno's dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci U S A. 2007;104(43):17004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–77.

    Article  CAS  PubMed  Google Scholar 

  • Binford GJ, Bodner MR, Cordes MHJ, Baldwin KL, Rynerson MR, Burns SN, Zobel-Thropp PA. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol. 2009;26(3):547–66.

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker JK, Hunt DM. Evolution of vertebrate visual pigments. Curr Biol. 2006;16(13):R484–9.

    Article  CAS  PubMed  Google Scholar 

  • Brookfield JFY. Evolution: What determines the rate of sequence evolution? Curr Biol. 2000;10(11):R410–1.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.

    Article  PubMed  Google Scholar 

  • Casewell NR, Wagstaff SC, Wüster W, et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A. 2014;111(25):9205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chain FJJ, Feulner PGD, Panchal M, Eizaguirre C, Samonte IE, Kalbe M, et al. Extensive copy-number variation of young genes across stickleback populations. PLoS Genet. 2014;10(12), e1004830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang D, Duda Jr TF. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol. 2012;29(8):2019.

    Article  CAS  PubMed  Google Scholar 

  • Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M. Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol. 2001;18:120–31.

    Article  CAS  PubMed  Google Scholar 

  • Creer S, Malhotra A, Thorpe RS, Stöcklin R, Favreau P, Chou WH. Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric focusing. J Mol Evol. 2003;56(3):317–29.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Nikolaidis N, Goto H, et al. Comparative genomics and evolution of the alpha-defensin multigene family in primates. Mol Biol Evol. 2010;27(10):2333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;10:14:234. doi: 10.1186/1471-2164-14-234.

    Google Scholar 

  • Duda Jr TF, Remigio EA. Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails. Mol Ecol. 2008;17:3018–32.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Biass D, Stocklin R, Favreau P. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon. 2010;55(8):1453–62.

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RL. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun. 2014;5:3521.

    PubMed  PubMed Central  Google Scholar 

  • Eirín-López JM, Rebordinos L, Rooney AP, Rozas J. The birth-and-death evolution of multigene families revisited. Genome Dyn. 2012;7:170–96.

    Article  PubMed  Google Scholar 

  • Endo T, Ikeo K, Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996;13(5):685–90.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RA, Pollock DD. Observations of amino acid gain and loss during protein evolution are explained by statistical bias. Mol Biol Evol. 2006;23(7):1444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Demuth JP, Han SG. Accelerated rate of gene gain and loss in primates. Genetics. 2007;177:1941–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res. 2009;19:859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsh AE, Fraser HB. Protein dispensability and rate of evolution. Nature. 2001;411:1046–9.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda N, Chijiwa T, Matsubara K, Oda-Ueda N, Hattori S, Matsuda Y, Ohno M. Unique structural characteristics and evolution of a cluster of venom phospholipase A2 isozyme genes of Protobothrops flavoviridis snake. Gene. 2010;461:15-25. doi: 10.1016/j.gene.2010.04.001.

    Google Scholar 

  • Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 2010;11(2):97–108.

    CAS  PubMed  Google Scholar 

  • Iskow RC, Gokcumen O, Abyzov A, Malukiewicz J, Zhu Q, Sukumar AT, Pai AA, Mills RE, Habegger L, Cusanovich DA, Rubel MA, Perry GH, Gerstein M, Stone AC, Gilad Y, Lee C. Regulatory element copy number differences shape primate expression profiles. Proc Natl Acad Sci U S A. 2012;109(31):12656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genom Hum Genet. 2010;11:239–64.

    Article  CAS  Google Scholar 

  • Jiang Y, Li Y, Lee W, Xu X, Zhang Y, Zhao R, Zhang Y, Wang W. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC Genomics. 2011; I 3:12:1. doi: 10.1186/1471-2164-12-1.

    Google Scholar 

  • Katju V, Bergthorsson U. Copy-number changes in evolution: rates, fitness effects and adaptive significance. Front Genet. 2013;4:273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kini RM, Chan YM. Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. J Mol Evol. 1999;48:125–32.

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc B. 2012;279(1749):5048–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21(5):676–9.

    Article  Google Scholar 

  • Kozminsky-Atias A, Zilberberg N. Molding the business end of neurotoxins by diversifying evolution. FASEB J. 2012;26:576–86.

    Article  CAS  PubMed  Google Scholar 

  • Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature. 2005;437:94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llewelyn J, Webb JK, Shine R. Flexible defense: context-dependent antipredator responses of two species of Australian elapid snakes. Herpetologica. 2010;66(1):1–11.

    Article  Google Scholar 

  • Malhotra A, Creer S, Harris JB, Stöcklin R, Favreau P, Thorpe RS. Predicting function from sequence in a large multifunctional toxin family. Toxicon. 2013;72:113–25.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A, Creer S, Harris JB, Thorpe RS. The importance of being genomic: non-coding and coding sequences suggest different models of toxin multi-gene family evolution. Toxicon. 2015.

    Google Scholar 

  • Margres MJ, McGivern JJ, Seavy M, Wray KP, Facente J, Rokyta DR. Contrasting modes and tempos of venom expression evolution in two snake species. Genetics. 2015;199:165–76.

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta. 2000;1477:146–56.

    Article  CAS  PubMed  Google Scholar 

  • McAllister BF, McVean GAT. Neutral evolution of the sex-determining gene transformer in Drosophila. Genetics. 2000;154:1711–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991;351:652–4.

    Article  CAS  PubMed  Google Scholar 

  • Mendivil Ramos O, Ferrier DEK. Mechanisms of gene duplication and translocation and progress towards understanding their relative contributions to animal genome evolution. Int J Evol Biol. [Internet]. 2012 Aug 7 [cited 27 May 2015]; 7:846421. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22919542, doi:10.1155/2012/846421

  • Messer PW, Petrov DA. Frequent adaptation and the McDonald–Kreitman test. Proc Natl Acad Sci U S A. 2013;110(21):8615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Weaver S, Smith MD, Wertheim O, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, Scheffler K, Kosakovsky Pond SL. Gene-wide identification of episodic selection. Mol Biol Evol. 2015;32:1365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimura Y. Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics. 2012;13(2):103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa M, Nei M. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc Natl Acad Sci U S A. 2007;104(17):7122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Nakashima K, Nobuhisa I, Deshimaru M, Shimohigashi Y, Fukumaki Y, Sakaki Y, Hattori S, Ohno M. Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions. Toxicon. 1996;34(11–12):1229–36.

    Article  CAS  PubMed  Google Scholar 

  • Oguiura N, Collares MA, Furtado MFD, Ferrarezzi H, Suzuki H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene. 2009;446(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  • Pahari S, Bickford D, Fry BG, Kini RM. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. BMC Evol Biol. 2007;7:175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The dynamically evolving nematocyst content of an anthozoan, a scyphozoan, and a hydrozoan. Mol Biol Evol. 2015;32:740–53.

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol. 2015;32(1):173–83.

    Article  CAS  PubMed  Google Scholar 

  • Sano E, Maisnier-Patin S, Aboubechara JP, Quiñones-Soto S, Roth JR. Plasmid copy number underlies adaptive mutability in bacteria. Genetics. 2014;198(3):919–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagar K, Casewell NR, Varma S, Kolla R, Antunes A, Moran Y. Deadly innovations: unravelling the molecular evolution of animal venoms. In: Gopalakrishnakone P, Calvete JJ, editors. Toxinology: venom genomics and proteomics. Springer: Netherlands. 2015.

    Google Scholar 

  • Szöllősi GJ, Tannier E, Daubin V, Boussau B. The inference of gene trees with species trees. Syst Biol. 2015;64(1):e42–62.

    Article  PubMed  Google Scholar 

  • von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins. 2014;6(12):3488–551.

    Article  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR, Kerkkamp HME, Vos RA, Guerreiro I, Calvete JJ, Wüster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning APJ, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JMC, Arntzen JW, van den Thillart GEEJM, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110(51):20651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilburn DB, Bowen KE, Gregg RG, Cai J, Feldhoff PW, Houck LD, Feldhoff RC. Proteomics and UTR analyses of a rapidly evolving hypervariable family of vertebrate pheromones. Evolution. 2012;66:2227–39.

    Article  CAS  PubMed  Google Scholar 

  • Wong ESW, Belov K. Venom evolution through gene duplications. Gene. 2012;496(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, et al. Toxin diversity revealed by a transcriptomic study of Ornithoctonus huwena. PLoS One. 2014;9(6), e100682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Lin Z, Ma H. Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants. Genome Biol. 2010;11(4):R38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilversmit MM, Chase EK, Chen DS, Awadalla P, Day KP, McVean G. Hypervariable antigen genes in malaria have ancient roots. BMC Evol Biol. 2013;13:110.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Malhotra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Malhotra, A. (2017). Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_5

Download citation

Publish with us

Policies and ethics