Skip to main content

Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Reprograming Microbial Metabolic Pathways

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

Elementary mode analysis is a useful metabolic pathway analysis tool to characterize cellular metabolism. It can identify all feasible metabolic pathways known as elementary modes that are inherent to a metabolic network. Each elementary mode contains a minimal and unique set of enzymatic reactions that can support cellular functions at steady state. Knowledge of all these pathway options enables systematic characterization of cellular phenotypes, analysis of metabolic network properties (e.g. structure, regulation, robustness, and fragility), phenotypic behavior discovery, and rational strain design for metabolic engineering application. This chapter focuses on the application of elementary mode analysis to reprogram microbial metabolic pathways for rational strain design and the metabolic pathway evolution of designed strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CASOP:

computational approach for strain optimization aiming at high productivity

cMCS:

constrained minimal cut set

EM:

elementary mode

EMA:

elementary mode analysis

ExPa:

extreme pathway

FBA:

flux balance analysis

MFA:

metabolic flux analysis

MPA:

metabolic pathway analysis

References

  • Ay F, Kahveci T (2010) Functional similarities of reaction sets in metabolic pathways. In: Proceedings of the first ACM international conference on bioinformatics and computational biology, ACM, Niagara Falls, New York, pp 102–111

    Google Scholar 

  • Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010) Importance of NADPH supply for improved L-valine formation in corynebacterium glutamicum. Biotechnol Prog 26:361–371

    PubMed  CAS  Google Scholar 

  • Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S (2008) Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol 252:433–441

    PubMed  CAS  Google Scholar 

  • Bell SL, Palsson BO (2005) Expa: a program for calculating extreme pathways in biochemical reaction networks. Bioinformatics 21:1739–1740

    PubMed  CAS  Google Scholar 

  • Beurton-Aimar M, Beauvoit B, Monier A, Vallee F, Dieuaide-Noubhani M, Colombie S (2011) Comparison between elementary flux modes analysis and 13c-metabolic fluxes measured in bacterial and plant cells. BMC Syst Biol 5:95

    PubMed  CAS  Google Scholar 

  • Beuster G, Zarse K, Kaleta C, Thierbach R, Kiehntopf M, Steinberg P, Schuster S, Ristow M (2011) Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to impair malignant growth. J Biol Chem 286:22323–22330

    PubMed  CAS  Google Scholar 

  • Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    PubMed  CAS  Google Scholar 

  • Cakir T, Kirdar B, Ulgen KO (2004) Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Biotechnol Bioeng 86:251–260

    PubMed  CAS  Google Scholar 

  • Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in saccharomyces cerevisiae. BMC Syst Biol 1:18

    PubMed  Google Scholar 

  • Carlson RP (2007) Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23:1258–1264

    PubMed  CAS  Google Scholar 

  • Carlson R, Srienc F (2004a) Fundamental Escherichia coli biochemical pathways for biomass and energy production: identification of reactions. Biotech Bioeng 85:1–18

    CAS  Google Scholar 

  • Carlson R, Srienc F (2004b) Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotech Bioeng 86:149–162

    CAS  Google Scholar 

  • Carlson R, Fell D, Srienc F (2002) Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotech Bioeng 79:121–134

    CAS  Google Scholar 

  • Centler F, Kaleta C, di Speroni Fenizio P, Dittrich P (2010) A parallel algorithm to compute chemical organizations in biological networks. Bioinformatics 26:1788–1789

    PubMed  CAS  Google Scholar 

  • Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:17845–17850

    PubMed  CAS  Google Scholar 

  • Chen N, Du J, Liu H, Xu QY (2009) Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by corynebacterium glutamicum. Ann Microbiol 59:317–322

    CAS  Google Scholar 

  • Chen Z, Zhang JA, Liu DH (2010) Elementary mode analysis for the rational design of efficient succinate conversion from glycerol by Escherichia coli. J Biomed Biotechnol 518743

    Google Scholar 

  • Chen Z, Liu H, Liu D (2011) Metabolic pathway analysis of 1,3-propanediol production with a genetically modified klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase. Biochem Eng J 54:151–157

    CAS  Google Scholar 

  • Christensen B, Karoly Gombert A, Nielsen J (2002) Analysis of flux estimates based on 13c-labelling experiments. Eur J Biochem 269:2795–2800

    PubMed  CAS  Google Scholar 

  • de Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, Schuster S, Planes FJ (2009) Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25:3158–3165

    PubMed  Google Scholar 

  • Diniz SC, Voss I, Steinbuchel A (2006) Optimization of cyanophycin production in recombinant strains of pseudomonas putida and ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol Bioeng 93:698–717

    PubMed  CAS  Google Scholar 

  • Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14:47–58

    PubMed  CAS  Google Scholar 

  • Durot M, Bourguignon P-Y, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    PubMed  CAS  Google Scholar 

  • Feist A, Palsson B (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotech 26:659–667

    CAS  Google Scholar 

  • Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 1(3):344–349

    Google Scholar 

  • Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286(Pt 2):313–330

    PubMed  CAS  Google Scholar 

  • Flynn CM, Hunt KA, Gralnick JA, Srienc F (2012) Construction and elementary mode analysis of a metabolic model for shewanella oneidensis Mr-1. Biosystems 107:120–128

    PubMed  CAS  Google Scholar 

  • Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91:643–648

    PubMed  CAS  Google Scholar 

  • Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839

    PubMed  CAS  Google Scholar 

  • Hädicke O, Klamt S (2010) Casop: a computational approach for strain optimization aiming at high productivity. J Biotechnol 147:88–101

    PubMed  Google Scholar 

  • Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotech 28:977–982

    CAS  Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) Copasi – a complex pathway simulator. Bioinformatics 22:3067–3074

    PubMed  CAS  Google Scholar 

  • Jamshidi N, Palsson BO (2008) Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 4:171

    PubMed  Google Scholar 

  • Jensen P, Lutz K, Papin J (2011) Tiger: toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks. BMC Syst Biol 5:147

    PubMed  CAS  Google Scholar 

  • Jevremovic D, Trinh CT, Srienc F, Boley D (2010) On algebraic properties of extreme pathways in metabolic networks. J Comput Biol 17:107–119

    PubMed  CAS  Google Scholar 

  • Jevremovic D, Trinh CT, Srienc F, Sosa CP, Boley D (2011) Parallelization of nullspace algorithm for the computation of metabolic pathways. Parallel Comput 37:261–278

    PubMed  Google Scholar 

  • Kaleta C, de Figueiredo LF, Schuster S (2009) Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res 19:1872–1883

    PubMed  CAS  Google Scholar 

  • Kaleta C, de Figueiredo LF, Werner S, Guthke R, Ristow M, Schuster S (2011) In Silico Evidence for gluconeogenesis from fatty acids in humans. PLoS Comput Biol 7:e1002116

    PubMed  CAS  Google Scholar 

  • Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    PubMed  CAS  Google Scholar 

  • Kenanov D, Kaleta C, Petzold A, Hoischen C, Diekmann S, Siddiqui RA, Schuster S (2010) Theoretical study of lipid biosynthesis in wild-type Escherichia coli and in a protoplast-type L-form using elementary flux mode analysis. FEBS J 277:1023–1034

    PubMed  CAS  Google Scholar 

  • Kim J, Reed J (2010) Optorf: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 4:53

    PubMed  Google Scholar 

  • Kim J, Reed JL, Maravelias CT (2011) Large-scale Bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 6:e24162

    PubMed  CAS  Google Scholar 

  • Kind S, Wittmann C (2011) Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91:1287–1296

    PubMed  CAS  Google Scholar 

  • Klamt S (2006) Generalized concept of minimal Cut sets in biochemical networks. Bio Syst 83:233–247

    CAS  Google Scholar 

  • Klamt S, Gilles ED (2004) Minimal cut sets in biochemical reaction networks. Bioinformatics 20:226–234

    PubMed  CAS  Google Scholar 

  • Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21:64–69

    PubMed  CAS  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Syst Biol 1:2

    PubMed  Google Scholar 

  • Kromer JO, Wittmann C, Schroder H, Heinzle E (2006) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and corynebacterium glutamicum. Metab Eng 8:353–369

    PubMed  Google Scholar 

  • Kurata H, Zhao Q, Okuda R, Shimizu K (2007) Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. BMC Syst Biol 1:31

    PubMed  Google Scholar 

  • Larhlimi A, Bockmayr A (2009) A New constraint-based description of the steady-state flux cone of metabolic networks. Discret Appl Math 157:2257–2266

    Google Scholar 

  • Larhlimi A, Blachon S, Selbig J, Nikoloski Z (2011) Robustness of metabolic networks: a review of existing definitions. Biosystems 106:1–8

    PubMed  Google Scholar 

  • Lee S, Phalakornkule C, Domach MM, Grossmann IE (2000) Recursive milp model for finding all the alternate optima in Lp models for metabolic networks. Comput Chem Eng 24:711–716

    CAS  Google Scholar 

  • Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat Rev Micro 10:291–305

    CAS  Google Scholar 

  • Liao JC, Hou SY, Chao YP (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 52:129–140

    PubMed  CAS  Google Scholar 

  • Machado D, Costa RS, Ferreira EC, Rocha I, Tidor B (2012) Exploring the gap between dynamic and constraint-based models of metabolism. Metab Eng 14:112–119

    PubMed  CAS  Google Scholar 

  • Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276

    PubMed  CAS  Google Scholar 

  • Martínez I, Bennett GN, San K-Y (2010) Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab Eng 12:499–509

    PubMed  Google Scholar 

  • Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Fact 10:70

    PubMed  CAS  Google Scholar 

  • Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Micro 10:191–202

    CAS  Google Scholar 

  • Melzer G, Esfandabadi M, Franco-Lara E, Wittmann C (2009) Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120

    PubMed  Google Scholar 

  • Min Y, Jin X, Chen M, Pan Z, Ge Y, Chang J (2011) Pathway knockout and redundancy in metabolic networks. J Theor Biol 270:63–69

    PubMed  CAS  Google Scholar 

  • Neuner A, Heinzle E (2011) Mixed glucose and lactate uptake by corynebacterium glutamicum through metabolic engineering. Biotechnol J 6:318–329

    PubMed  CAS  Google Scholar 

  • Nookaew I, Meechai A, Thammarongtham C, Laoteng K, Ruanglek V, Cheevadhanarak S, Nielsen J, Bhumiratana S (2007) Identification of flux regulation coefficients from elementary flux modes: a systems biology tool for analysis of metabolic networks. Biotechnol Bioeng 97:1535–1549

    PubMed  CAS  Google Scholar 

  • Pagani I, Liolios K, Jansson J, Chen I-MA, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The genomes online database (gold) V.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–D579

    PubMed  CAS  Google Scholar 

  • Papin JA, Price ND, Edwards JS, Palsson BBO (2002a) The genome-scale metabolic extreme pathway structure in haemophilus influenzae shows significant network redundancy. J Theor Biol 215:67–82

    PubMed  CAS  Google Scholar 

  • Papin JA, Price ND, Palsson BO (2002b) Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res 12:1889–1900

    PubMed  CAS  Google Scholar 

  • Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–405

    PubMed  CAS  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    PubMed  CAS  Google Scholar 

  • Patil K, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308

    Google Scholar 

  • Peres S, Vallee F, Beurton-Aimar M, Mazat JP (2011) Acom: a classification method for elementary flux modes based on motif finding. Biosystems 103:410–419

    PubMed  CAS  Google Scholar 

  • Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, Montero F, Schuster S (1999) Metatool: for studying metabolic networks. Bioinformatics 15:251–257

    PubMed  CAS  Google Scholar 

  • Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8:1–13

    PubMed  CAS  Google Scholar 

  • Pharkya P, Burgard A, Maranas C (2004) Optstrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376

    PubMed  CAS  Google Scholar 

  • Poolman MG (2006) Scrumpy: metabolic modelling with python. IEE Proc Syst Biol 153:375–378

    CAS  Google Scholar 

  • Poolman MG, Fell DA, Raines CA (2003) Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur J Biochem 270:430–439

    PubMed  CAS  Google Scholar 

  • Poolman MG, Venkatesh KV, Pidcock MK, Fell DA (2004) A method for the determination of flux in elementary modes, and its application to lactobacillus rhamnosus. Biotechnol Bioeng 88:601–612

    PubMed  CAS  Google Scholar 

  • Poolman MG, Sebu C, Pidcock MK, Fell DA (2007) Modular decomposition of metabolic systems via null-space analysis. J Theor Biol 249:691–705

    PubMed  CAS  Google Scholar 

  • Price ND, Reed JL, Papin JA, Famili I, Palsson BO (2003) Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys J 84:794–804

    PubMed  CAS  Google Scholar 

  • Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    PubMed  CAS  Google Scholar 

  • Rajvanshi M, Venkatesh K (2011) Phenotypic characterization of corynebacterium glutamicum under osmotic stress conditions using elementary mode analysis. J Ind J Ind Microbiol Biotechnol 38:1345–1357

    CAS  Google Scholar 

  • Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175–201

    PubMed  CAS  Google Scholar 

  • Reed JL, Palsson BØ (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14:1797–1805

    PubMed  CAS  Google Scholar 

  • Rockafellar RT (1970) Convex analysis, 28th edn. Princeton University Press, Princeton

    Google Scholar 

  • Rügen M, Bockmayr A, Legrand J, Cogne G (2012) Network reduction in metabolic pathway analysis: elucidation of the key pathways involved in the photoautotrophic growth of the green alga Chlamydomonas reinhardtii. Metab Eng 14(4):458–467

    PubMed  Google Scholar 

  • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    PubMed  Google Scholar 

  • Schaeuble S, Schuster S, Kaleta C (2011) Hands-on metabolism: analysis of complex biochemical networks using elementary flux modes. In: Jameson D, Verma, M, Westerhoff, HV (eds) Methods in enzymology, vol 500. Elsevier/Academic, San Diego, pp 437–456

    Google Scholar 

  • Schauble S, Heiland I, Voytsekh O, Mittag M, Schuster S (2011) Predicting the physiological role of circadian metabolic regulation in the green alga Chlamydomonas reinhardtii. PLoS One 6:e23026

    PubMed  Google Scholar 

  • Schellenberger J, Park J, Conrad T, Palsson B (2010) Bigg: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinform 11:213

    Google Scholar 

  • Schilling CH, Edwards JS, Letscher D, Palsson BO (2000a) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71:286–306

    PubMed  CAS  Google Scholar 

  • Schilling CH, Letscher D, Palsson BO (2000b) Theory for the systemic definition of metabolic pathways and their Use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248

    PubMed  CAS  Google Scholar 

  • Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    PubMed  Google Scholar 

  • Schuster S, Hilgetag S (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182

    Google Scholar 

  • Schuster R, Schuster S (1993) Refined algorithm and computer program calculating All Non-negative fluxes admissible in steady states of biochemical reaction systems with and without some fluxes rates fixed. CABIOS 9:79–85

    PubMed  CAS  Google Scholar 

  • Schuster S, Hilgetag C, Woods JH, Fell DA (1994) Elementary modes of functioning in biochemical networks. In: Cuthbertson R, Holcombe M, Paton R (eds) Computation in cellular and molecular biological systems. World Scientific, Singapore, pp 151–165

    Google Scholar 

  • Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60

    PubMed  CAS  Google Scholar 

  • Schuster S, Hilgetag C, Woods JH, Fell DA (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 45:153–181

    PubMed  CAS  Google Scholar 

  • Schuster S, Kamp A, Pachkov M (2006) Understanding the roadmap of metabolism by pathway analysis. Method Mol Biol 358:199–226

    Google Scholar 

  • Schuster S, Pfeiffer T, Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 252:497–504

    PubMed  CAS  Google Scholar 

  • Schwartz J-M, Kanehisa M (2005) A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes. Bioinformatics 21:ii204–205

    PubMed  CAS  Google Scholar 

  • Schwartz J-M, Kanehisa M (2006) Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinform 7:186

    Google Scholar 

  • Schwarz R, Liang C, Kaleta C, Kuehnel M, Hoffmann E, Kuznetsov S, Hecker M, Griffiths G, Schuster S, Dandekar T (2007) Integrated network reconstruction, visualization and analysis using Yanasquare. BMC Bioinform 8:313

    Google Scholar 

  • Song H-S, Ramkrishna D (2012) Prediction of dynamic behavior of mutant strains from limited wild-type data. Metab Eng 14:69–80

    PubMed  CAS  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190–193

    PubMed  CAS  Google Scholar 

  • Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen JH (1998) Metabolic engineering: principles and methodologies. Academic, San Diego

    Google Scholar 

  • Tepper N, Shlomi T (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26:536–543

    PubMed  CAS  Google Scholar 

  • Terzer M, Stelling J (2008) Large scale computation of elementary flux modes with Bit pattern trees. Bioinformatics 24(19):2229–2235

    PubMed  CAS  Google Scholar 

  • Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    PubMed  CAS  Google Scholar 

  • Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95:5606–5617

    PubMed  CAS  Google Scholar 

  • Trinh C (2012) Elucidating and optimizing E. coli metabolisms for obligate anaerobic butanol and isobutanol production. Appl Microbiol Biotechnol 95(4):1083–1094

    Google Scholar 

  • Trinh CT, Srienc F (2009) Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl Environ Microbiol 75:6696–6705

    PubMed  CAS  Google Scholar 

  • Trinh CT, Carlson R, Wlaschin A, Srienc F (2006) Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab Eng 8:628–638

    PubMed  CAS  Google Scholar 

  • Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643

    PubMed  CAS  Google Scholar 

  • Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81:813–826

    PubMed  CAS  Google Scholar 

  • Trinh CT, Li J, Blanch HW, Clark DS (2011) Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol 77:4894–4904

    PubMed  CAS  Google Scholar 

  • Unrean P, Srienc F (2011) Metabolic networks evolve towards states of maximum entropy production. Metab Eng 13:666–673

    PubMed  CAS  Google Scholar 

  • Unrean P, Srienc F (2012) Predicting the adaptive evolution of thermoanaerobacterium saccharolyticum. J Biotechnol 158:259–266

    PubMed  CAS  Google Scholar 

  • Unrean P, Trinh CT, Srienc F (2010) Rational design and construction of an efficient E. coli for production of diapolycopendioic acid. Metab Eng 12:112–122

    PubMed  CAS  Google Scholar 

  • Vijayasankaran N, Carlson R, Srienc F (2005) Metabolic pathway structures for recombinant protein synthesis in Escherichia coli. Appl Microbiol Biotechnol 68:737–746

    PubMed  CAS  Google Scholar 

  • von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930–1931

    Google Scholar 

  • Wang L, Birol I, Hatzimanikatis V (2004) Metabolic control analysis under uncertainty: framework development and case studies. Biophys J 87:3750–3763

    PubMed  CAS  Google Scholar 

  • Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C (2011) Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol 7:515

    PubMed  Google Scholar 

  • Wiback SJ, Mahadevan R, Palsson BO (2003) Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum. J Theor Biol 224:313–324

    PubMed  CAS  Google Scholar 

  • Wiback SJ, Mahadevan R, Palsson BO (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng 86:317–331

    PubMed  CAS  Google Scholar 

  • Wiechert W, Möllney M, Petersen S, de Graaf AA (2001) A universal framework for 13c metabolic flux analysis. Metab Eng 3:265–283

    PubMed  CAS  Google Scholar 

  • Wilhelm T, Behre J, Schuster S (2004) Analysis of structural robustness of metabolic networks. Syst Biol 1:114–120

    CAS  Google Scholar 

  • Wlaschin AP, Trinh CT, Carlson R, Srienc F (2006) The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies. Metab Eng 8:338–352

    PubMed  CAS  Google Scholar 

  • Yang L, Cluett WR, Mahadevan R (2011) Emilio: a fast algorithm for genome-scale strain design. Metab Eng 13:272–281

    PubMed  CAS  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    PubMed  CAS  Google Scholar 

  • Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D (2008) Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control. Biotechnol Bioeng 100:542–559

    PubMed  CAS  Google Scholar 

  • Yuan J, Fowler WU, Kimball E, Lu W, Rabinowitz JD (2006) Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat Chem Biol 2:529–530

    PubMed  CAS  Google Scholar 

  • Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3:1328–1340

    PubMed  CAS  Google Scholar 

  • Yuan Y, Hoon Yang T, Heinzle E (2010) 13C metabolic flux analysis for larger scale cultivation using Gas chromatography-combustion-isotope ratio mass spectrometry. Metab Eng 12:392–400

    PubMed  CAS  Google Scholar 

  • Zamboni N, Fischer E, Sauer U (2005) Fiatflux – a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinform 6:209

    Google Scholar 

  • Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892

    PubMed  CAS  Google Scholar 

  • Zhang Q, Xiu Z (2009) Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol Prog 25:103–115

    PubMed  Google Scholar 

  • Zhao Q, Kurata H (2010) Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis. J Biosci Bioeng 110:254–261

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in parts by the laboratory start-up, SEERC seed, and JDRD funds for CT from the University of Tennessee, Knoxville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong T. Trinh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trinh, C.T., Thompson, R.A. (2012). Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Reprograming Microbial Metabolic Pathways. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_2

Download citation

Publish with us

Policies and ethics