Skip to main content

Development of Extraordinary Optical Transmission-Based Techniques for Biomedical Applications

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

Highly sensitive detection techniques have drawn tremendous interest because this method allows the precise tracking of molecular interactions and the observation of dynamics on a nanometric scale. Intracellular and extracellular processes can be measured at the molecular level; thus, highly sensitive techniques advance our understanding of biomolecular events in cellular and subcellular conditions and have been applied to many areas such as cellular and molecular analysis and ex vivo and in vivo observations.

In this chapter, we review near-field based biosensors that rely on extraordinary optical transmission (EOT) and some application techniques that have emerged recently based on the localization of a surface plasmon. Also, we refer to the fabrication methods for making various nanostructures: first, focused ion beam that employs the high-energy ions to create high-precision nanopatterns. Second, electron-beam lithography that capitalizes on highly focused electron beam to draw submicron size patterns on the metallic surfaces. Third, nanoimprint lithography suitable for massive nanostructure fabrications. Finally, photolithography feasible for the cost-effective fabrication. At the end of this chapter, we introduce some applications based on EOT for enhancement of sensitivity and techniques which assist high-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  Google Scholar 

  2. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  Google Scholar 

  3. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  Google Scholar 

  4. Kim K, Kim DJ, Cho EJ, Suh JS, Huh YM, Kim D (2009) Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells. Nanotechnology 20:015202

    Article  Google Scholar 

  5. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  Google Scholar 

  6. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  7. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163

    Article  MathSciNet  MATH  Google Scholar 

  8. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  Google Scholar 

  9. Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13:2445–2463

    Article  Google Scholar 

  10. Lesuffleur A, Im H, Lindquist NC, Oh SH (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90:243110

    Article  Google Scholar 

  11. Xue J, Zhou W, Dong B, Wnag X, Chen Y, Huq E, Zeng W, Qu X, Liu R (2009) Surface plasmon enhanced transmission through planar gold quasicrystals fabricated by focused ion beam technique. Microelectron Eng 86:1131–1133

    Article  Google Scholar 

  12. Xu T, Lezec HJ (2014) Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nat Commun 5:4141

    Google Scholar 

  13. Liu Y, Zhang X (2011) Metamaterials: a new frontier of science and technology. Chem Soc Rev 40:2494–2507

    Article  Google Scholar 

  14. Sharpe JC, Mitchell JS, Lin L, Sedoglavich N, Blaikie RJ (2008) Gold nanohole array substrates as immunobiosensors. Anal Chem 80:2244–2249

    Article  Google Scholar 

  15. Oh Y, Lee W, Kim Y, Kim D (2014) Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection. Biosens Bioelectron 51:401–407

    Article  Google Scholar 

  16. Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T, Kim D (2012) Nanoscale localization sampling based on nanoantenna arrays for super‐resolution imaging of fluorescent monomers on sliding microtubules. Small 8:892–900

    Article  Google Scholar 

  17. Martinez-Perdiguero J, Retolaza A, Otaduy D, Juarros A, Merino S (2013) Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography. Sensors 13:13960–13968

    Article  Google Scholar 

  18. Barbillon G (2012) Plasmonic nanostructures prepared by soft UV nanoimprint lithography and their application in biological sensing. Micromachines 3:21–27

    Article  Google Scholar 

  19. Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S, Mahajan S, Russell AE, Bartlett PN (2006) Localized and delocalized plasmons in metallic nanovoids. Phys Rev B 74:245415

    Article  Google Scholar 

  20. Gonçalves MR, Makaryan T, Enderle F, Wiedemann S, Plettl A, Marti O, Ziemann P (2011) Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching. Beilstein J Nanotechnol 2:448–458

    Article  Google Scholar 

  21. Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Physiol 60:147–165

    Article  Google Scholar 

  22. Liedberg B, Nylander C, Lunström I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sensors Actuators 4:299–304

    Article  Google Scholar 

  23. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  Google Scholar 

  24. Wright JB, Cicotte KN, Subramania G, Dirk SM, Brener I (2012) Chemoselective gas sensors based on plasmonic nanohole arrays. Opt Mater Express 2:1655–1662

    Article  Google Scholar 

  25. Nishijima Y, Nigorinuma H, Rosa L, Juodkazis S (2012) Selective enhancement of infrared absorption with metal hole arrays. Opt Mater Express 2:1367–1377

    Google Scholar 

  26. Lumerical. Retrieved http://www.lumerical.com

    Google Scholar 

  27. Martín-Moreno L, Carcía-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117

    Article  Google Scholar 

  28. Ohta N, Nomura K, Yagi I (2010) Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscophy. Langmuir 26:1897–18104

    Article  Google Scholar 

  29. Miyatake H, Hosono E, Osawa M, Okada T (2006) Surface-enhanced infrared absorption spectroscopy using chemically deposited pd thin film electrodes. Chem Phys Lett 428:451–456

    Article  Google Scholar 

  30. Aouani H, Sipova H, Rahmani M, Navarro-Cia M, Hegnerova K, Homola J, Hong M, Maier SA (2013) Ultrasensitive broadband probing of molecule vibrational modes with multifrequency optical antennas. ACS Nano 7:669–675

    Article  Google Scholar 

  31. Nishijima Y, Adachi Y, Rosa L, Juodkazis S (2013) Augmented sensitivity of an IR-absorption gas sensor employing a metal hole array. Opt Mater Express 3:968–976

    Article  Google Scholar 

  32. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  Google Scholar 

  33. Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10:4962–4969

    Article  Google Scholar 

  34. Docter MW, Van den Berg PM, Alkemade PF, Kutchoukov VG, Piciu OM, Bossche A, Young IT, Garini Y (2007) Structured illumination microscopy using extraordinary transmission through sub-wavelength hole-arrays. J Nanophotonics 1:011665–011665

    Article  Google Scholar 

  35. Choi J-R, Kim K, Oh Y, Kim AL, Kim SY, Shin JS, Kim D (2014) Extraordinary transmission‐based plasmonic nanoarrays for axially super‐resolved cell imaging. Adv Opt Mater 2:48–55

    Article  Google Scholar 

  36. Yao J, Stewart ME, Maria J, Lee TW, Gray SK, Rogers JA, Nuzzo RG (2008) Seeing molecules by eye: surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew Chem Int Ed 120:5091–5095

    Article  Google Scholar 

  37. Najiminaini M, Vasefi F, Kaminska B, Carson JJ (2013) Nanohole-array-based device for 2D snapshot multispectral imaging. Sci Rep 3:2589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyujung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lee, S., Song, H., Hwang, S., Choi, Jr., Kim, K. (2017). Development of Extraordinary Optical Transmission-Based Techniques for Biomedical Applications. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_1

Download citation

Publish with us

Policies and ethics