Skip to main content

Roles of Rhizospheric Processes and Plant Physiology in Applied Phytoremediation of Contaminated Soils Using Brassica Oilseeds

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 21))

Abstract

The current chapter reviews in detail significant physiological mechanisms of metal accumulating Brassica species and discusses rhizospheric processes and soil management, including the role of soil amendments such as chelators in enhancing the uptake of toxic metals, focusing on their roles in phytoremediation of contaminated sites worldwide, in addition to presenting an overview of the field of phytoremediation, including its merits and shortcomings. Recent progress towards the use of oilseed Brassica species in field-based studies is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Alford EA, Pilon-Smits EAH, Paschke M (2010) Metallophytes – a view from the rhizosphere. Plant Soil 337:33–50

    Article  CAS  Google Scholar 

  • Angle JS, Linacre NA (2005) Metal phytoextraction – a survey of potential risks. Int J Phytoremediation 7:241–254

    Article  CAS  Google Scholar 

  • Angle JS, Chaney RL, Baker AJM, Li Y-M, Reeves R, Volk V et al (2001) Developing commercial phytoremediation technologies: practical considerations. S Afr J Sci 97:619–623

    CAS  Google Scholar 

  • Babaoglu M, Gezgin S, Topal A, Sade B, Dural H (2004) Gypsophila spaerocephala Fenzl ex Tchihat.: a boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turk J Bot 28:273–278

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumlator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–108

    Google Scholar 

  • Banuelos G, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Bioremediation and biodegradation: analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  CAS  Google Scholar 

  • Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15:1632–1642

    Article  CAS  Google Scholar 

  • Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567

    Article  Google Scholar 

  • Boyd RS (2009) High-nickel insects and nickel hyperaccumulator plants: a review. Insect Sci 16:19–31

    Article  CAS  Google Scholar 

  • Boyd RS, Davis MA (2001) Metal tolerance and accumulation ability of the Ni hyperaccumulator Streptanthus polygaloides Gray (Brassicaceae). Int J Phytoremediation 3:353–367

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Larry NJ, Robinson BH (1998) Phytomining. Trend Plant Sci 3:359–362

    Article  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  Google Scholar 

  • Chaney RL, Chen K-Y, Li Y-M, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140

    Article  CAS  Google Scholar 

  • Cho M, Chardonnens AN, Dietz K-J (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • Del Val C, Barea JM, Azcón-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  • Fones H, Davis CAR, Rico A, Fang F, Smith JAC et al (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog 6:e1001093

    Article  Google Scholar 

  • Galeas ML, Zhang L-H, Freeman JL, Wegner M, Pilon-Smits EAH (2006) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  Google Scholar 

  • Ghasemi R, Ghaderian SM, Kramer U (2009) Accumulation of nickel in trichomes of a nickel hyperaccumulator plant, Alyssum inflatum. Northeast Nat 16(Special issue 5):81–92

    Article  Google Scholar 

  • Giasson P, Jaouich A, Gagné S, Massicotte L, Cayer P, Moutoglis P (2006) Enhanced phytoremediation: a study of mycorrhizoremediation of heavy metal contaminated soil. Remediation 17:97–110

    Article  Google Scholar 

  • Hanen Z, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M et al (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615

    Article  Google Scholar 

  • Harrison SP, Rajakaruna N (eds) (2011) Serpentine: evolution and ecology in a model system. University of California Press, Berkeley

    Google Scholar 

  • Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Koch M, Al-Shehbaz IA (2004) Taxonomic and phylogenetic evaluation of the American “Thlaspi” species: identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst Bot 29:375–384

    Article  Google Scholar 

  • Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst Evol 227:209–225

    Article  CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  Google Scholar 

  • Lai H-Y, Chen S-W, Chen Z-S (2008) Pot experiment to study the uptake of Cd and Pb by three Indian mustard (Brassica juncea) grown in artificially contaminated soils. Int J Phytoremediation 10:91–105

    Article  CAS  Google Scholar 

  • Lasat MM, Kochian LV (2000) Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 167–177

    Google Scholar 

  • Li Y-M, Chaney RL, Brewer E, Roseberg RJ, Angle JS et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visoli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Freeman JL (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4:203–210

    Article  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  CAS  Google Scholar 

  • Podar D, Ramsey MH, Hutchings MJ (2004) Effect of cadmium, zinc, and substrate heterogeneity on yield, shoot metal concentration and metal uptake by Brassica juncea: implications for human health risk assessment and phytoremediation. New Phytol 163:313–324

    Article  CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Pongrac P, Zhao FJ, Razinger J, Zrimec A, Regvar M (2009) Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environ Exp Bot 66:479–486

    Article  CAS  Google Scholar 

  • Puschenreiter M, Wieczorek S, Horak O, Wenzel WW (2003) Chemical changes in the rhizosphere of metal hyperaccumulator excluder Thalspi species. J Plant Nutr Soil Sci 168:579–584

    Article  Google Scholar 

  • Quinn CF, Freeman JL, Reynolds RJB, Lindblom SD, Cappa JJ et al (2010) Selenium hyperaccumulation protects plants from cell disruptor herbivores. BMC Ecol 10:19

    Article  Google Scholar 

  • Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jorgensen SE, Fath B (eds) The encyclopedia of ecology, vol 2nd. Elsevier, Oxford, pp 1201–1207

    Chapter  Google Scholar 

  • Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Ceylon J Sci 35:25–39

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Reeves RD (2002) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Dordrecht, pp 25–52

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PM et al (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116

    Article  CAS  Google Scholar 

  • Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789

    Article  Google Scholar 

  • Salt DE, Kato N, Kramer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 196–207

    Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 178–195

    Google Scholar 

  • Strauss SY, Boyd RS (2011) Herbivory and other cross-kingdom interactions on harsh soils. In: Harrison SP, Rajakaruna N (eds) Serpentine: evolution and ecology in a model system. University of California Press, Berkeley, pp 181–200

    Google Scholar 

  • Tsao DT (2003) Phytoremediation. Advances in biochemical engineering biotechnology 78. Springer, Berlin, p 206

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    Article  CAS  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  Google Scholar 

  • Whiting SN, De Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisee F, Paton A, Smith JAC et al (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Wright J, von Wettberg E (2009) Serpentinomics – an emerging new field of study. Northeast Nat 16(Special issue 5):285–296

    Article  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005a) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Yang X-E, Jin X-F, Feng Y, Islam E (2005b) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035

    Article  CAS  Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G et al (2010) Molecular diversity of arbuscular mycorrhyizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  Google Scholar 

  • Zhu Y-G, Pilon-Smits EAH, Zhao F-J, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trend Plant Sci 19:436–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanta Rajakaruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Neilson, S., Rajakaruna, N. (2012). Roles of Rhizospheric Processes and Plant Physiology in Applied Phytoremediation of Contaminated Soils Using Brassica Oilseeds. In: Anjum, N., Ahmad, I., Pereira, M., Duarte, A., Umar, S., Khan, N. (eds) The Plant Family Brassicaceae. Environmental Pollution, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3913-0_12

Download citation

Publish with us

Policies and ethics