Skip to main content

Ionic Liquids as Green Solvents: Progress and Prospects

  • Chapter
  • First Online:
Green Solvents II

Abstract

Volatile organic solvents (VOS) creating increasing air pollution are common reaction media for many chemical processes. VOS cannot be easily separated from the desired reaction products and difficult to recycle. In view of awareness of the deteriorating environment, researches are directed on developing alternative environmental friendly solvent systems to replace traditional volatile organics. Within this context, the interest of ionic liquids (ILs) as “green” solvents resides in their extremely low vapor pressure and high thermal stability, which offers advantages such as ease of containment, product recovery, and recycling ability. In addition, ILs show considerable variation in their stability to moisture and their miscibility with molecular liquids. Properties such as density, melting point, water and cosolvent miscibility, viscosity, polarity, acid/base character, and coordinating ability can be tailored by the appropriate selection of the cation and/or anion component. ILs have been implemented as solvent systems in chemical reactions, separations, extractions, electroanalytical applications and chemical sensing, among many others. Also, they have high ionic character that enhances the reaction rates to a great extent in many reactions. These features allow ILs to be used as potential alternative solvents to VOS in a wide variety of industrial chemical processes. Furthermore, the use of ILs as industrial solvents can result in economical, social, and ecological impact due to their effect on the human health and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gemmell V (1990) VOC reduction. Solvent cleaning and paint stripping. Trans Soc Auto Eng 99:64–76

    Google Scholar 

  2. Matlack A (2003) Some recent trends and problems in green chemistry. Green Chem 5:7–12

    Google Scholar 

  3. Xie YY (2005) Organic reactions in ionic liquids: ionic liquid-accelerated one-pot synthesis of 2-arylimidazo[1,2-a]pyrimidines. Synthetic Commun 35:1741–1746

    CAS  Google Scholar 

  4. Wu W, Li W, Han B et al (2005) A green and effective method to synthesize ionic liquids: supercritical CO2 route. Green Chem 7:701–704

    CAS  Google Scholar 

  5. Guerrero-Sanchez C, Lobert M, Hoogenboom R et al (2007) Microwave-assisted homogeneous polymerizations in water-soluble ionic liquids: an alternative and green approach for polymer synthesis. Macromol Rapid Commun 28:456–464

    CAS  Google Scholar 

  6. Imperato G, Konig B, Chiappe C (2007) Ionic green solvents from renewable resources. Eur J Org Chem 2007: 1049–1058

    Google Scholar 

  7. Laszlo JA, Compton DL (2001) α-Chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol Bioeng 75:181–186

    CAS  Google Scholar 

  8. Renner R (2001) Ionic liquids: an industrial cleanup solution. Environ Sci Technol 35:410–413

    Google Scholar 

  9. Visser AE, Holbrey JD, Rogers RD (2001) Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid–liquid separations. Chem Commun 2484–2485

    Google Scholar 

  10. Wang Y, Tian M, Bi W, Row KH (2009) Application of ionic liquids in high performance reversed-phase chromatography. Int J Mol Sci 10:2591–2610

    CAS  Google Scholar 

  11. Huang JF, Luo H, Liang C et al (2008) Advanced liquid membranes based on novel ionic liquids for selective separation of olefin/paraffin via olefin-facilitated transport. Ind Eng Chem Res 47:881–888

    CAS  Google Scholar 

  12. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692

    CAS  Google Scholar 

  13. Fang MH, Wang LS (2007) Hydrolysis and partial recycling of a chloroaluminate ionic liquid. Int J Mol Sci 8:470–477

    CAS  Google Scholar 

  14. Mallakpour S, Dinari M (2007) Molten salt as a green reaction medium: synthesis of polyureas containing 4-phenylurazole moiety in the main chain in the presence of tetrabutylammonium bromide as an ionic liquid. e-Polymer no. 035:1–8

    Google Scholar 

  15. Wasserscheid P (2006) Volatile times for ionic liquids. Nature 439:797

    CAS  Google Scholar 

  16. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    CAS  Google Scholar 

  17. Fraga-Dubreuil J, Famelart MH, Bazureau JP (2002) Ecofriendly fast synthesis of hydrophilic poly(ethyleneglycol)-ionic liquid matrices for liquid-phase organic synthesis. Org Process Res Dev 6:374–378

    CAS  Google Scholar 

  18. Binnemans K (2005) Ionic liquid crystals. Chem Rev 105:4148–4204

    CAS  Google Scholar 

  19. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275–297

    CAS  Google Scholar 

  20. Ding J, Armstrong DW (2005) Chiral ionic liquids: synthesis and applications. Chirality 17:281–292

    CAS  Google Scholar 

  21. Jain N, Kumar A, Chauhan S et al (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015–1060

    CAS  Google Scholar 

  22. Liao L, Liu L, Zhang C, Gong S (2006) Microwave-assisted ring-opening polymerization of ε-caprolactone in the presence of ionic liquid. Macromol Rapid Commun 27:2060–2064

    CAS  Google Scholar 

  23. Liao L, Zhang C, Gong S (2007) Microwave-assisted ring-opening polymerization of trimethylene carbonate in the presence of ionic liquid. J Polym Sci Polym Chem 45:5857–5863

    CAS  Google Scholar 

  24. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    CAS  Google Scholar 

  25. Bica K, Gaertner P (2008) Applications of chiral ionic liquids. Eur J Org Chem 2008: 3235–3250

    Google Scholar 

  26. Greavesa TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37:1709–1726

    Google Scholar 

  27. Martins MAP, Frizzo CP, Moreira DN et al (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050

    CAS  Google Scholar 

  28. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    CAS  Google Scholar 

  29. Wasserscheid P, Keim W (2000) Ionic liquid – New solutions for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    CAS  Google Scholar 

  30. Wilkes JS (2002) A short history of ionic liquids – from molten salts to neoteric solvents. Green Chem 4:73–80

    CAS  Google Scholar 

  31. Marsh KN, Deer A et al (2002) Room temperature ionic liquids as replacements for conventional solvents. Korean J Chem Eng 19:357–362

    CAS  Google Scholar 

  32. van Rantwijk F, Lau MR, Sheldon RA (2003) Is there a new biosynthetic pathway for lung surfactant phosphatidylcholine? Trends Biotechnol 21:131–133

    Google Scholar 

  33. Baudequin C, Baudoux J, Levillain J et al (2003) Ionic liquids and chirality: opportunities and challenges. Tetrahedron Asymmetry 14:3081–3093

    CAS  Google Scholar 

  34. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Google Scholar 

  35. Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12

    CAS  Google Scholar 

  36. Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    CAS  Google Scholar 

  37. Shi F, Gu Y, Zhang Q, Deng Y (2004) Development of ionic liquids as green reaction media and catalysts. Catal Surv Asia 8:179–176

    CAS  Google Scholar 

  38. Antonietti M, Kuang D, Smarsly B et al (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992

    CAS  Google Scholar 

  39. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477

    CAS  Google Scholar 

  40. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry. Chem Phys Chem 5:1106–1120

    CAS  Google Scholar 

  41. Davis JH (2004) Task-specific ionic liquids. Chem Lett 33:1072–1077

    CAS  Google Scholar 

  42. Liu J, Jonsson JA, Jiang G (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27

    Google Scholar 

  43. Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids part II. Effect of the anion and toxicology. Green Chem 7:9–14

    CAS  Google Scholar 

  44. Zhao H (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B: Enzym 37:16–25

    CAS  Google Scholar 

  45. Yang Z, Pan WB (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37:19–28

    CAS  Google Scholar 

  46. Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci A: Polym Chem 43:4675–4683

    CAS  Google Scholar 

  47. Koel M (2005) Ionic liquids in chemical analysis. Crit Rev Anal Chem 35:177–192

    CAS  Google Scholar 

  48. Lin IJB, Vasam CS (2005) Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J Organomet Chem 690:3498–3512

    CAS  Google Scholar 

  49. Calo V, Nacci A, Monopoli A (2005) Pd-benzothiazol-2-ylidene complex in ionic liquids: efficient catalyst for carbon–carbon coupling reactions. J Organomet Chem 690:5458–5466

    CAS  Google Scholar 

  50. Zhang J, Bond AM (2005) Practical considerations associated with voltammetric studies in room temperature ionic liquids. Analyst 130:1132–1147

    CAS  Google Scholar 

  51. Flannigan DJ, Hopkins SD, Suslick KS (2005) Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions. J Organomet Chem 690:3513–3517

    CAS  Google Scholar 

  52. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096

    CAS  Google Scholar 

  53. Zhao H (2006) Are ionic liquids kosmotropic or chaotropic. J Chem Technol Biotechnol 81:877–891

    CAS  Google Scholar 

  54. Stepnowski P (2006) Application of chromatographic and electrophoretic methods for the analysis of imidazolium and pyridinium cations as used in ionic liquids. Int J Mol Sci 7:497–509

    CAS  Google Scholar 

  55. Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45

    CAS  Google Scholar 

  56. Zhang ZC (2006) Catalysis in ionic liquids. Adv Catal 49:153–237

    CAS  Google Scholar 

  57. Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    CAS  Google Scholar 

  58. Borodkin GI, Shubin VG (2006) Electrophilic reactions of aromatic and heteroaromatic compounds in ionic liquids. Russian J Org Chem 42:1745–1770

    CAS  Google Scholar 

  59. Singh RP, Verma RD, Meshri DT et al (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45:3584–3601

    CAS  Google Scholar 

  60. Moon YH, Lee SM, Ha SH et al (2006) Enzyme-catalyzed reactions in ionic liquids. Korean J Chem Eng 23:247–263

    CAS  Google Scholar 

  61. Lee SG (2006) Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun 1049–1063

    Google Scholar 

  62. Jorapur YR, Chi DY (2006) Ionic liquids: an environmentally friendly media for nucleophilic substitution reactions. Bull Korean Chem Soc 27:345–354

    CAS  Google Scholar 

  63. Muzart J (2006) Ionic liquids as solvents for catalyzed oxidations of organic compounds. Adv Synth Catal 348:275–295

    CAS  Google Scholar 

  64. Zhang S, Sun N, He X (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517

    CAS  Google Scholar 

  65. Xue H, Verma R, Shreeve JM (2006) Review of ionic liquids with fluorine-containing anions. J Fluorine Chem 127:159–176

    CAS  Google Scholar 

  66. Riisager A, Fehrmann R, Haumann M et al (2006) Supported ionic liquid phase (SILP) catalysis: an innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur J Inorg Chem 2006: 695–706

    Google Scholar 

  67. Keskin S, Kayrak-Talay D, Akman U et al (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids 43:150–180

    CAS  Google Scholar 

  68. El Seoud OA, Koschella A, Fidale LC et al (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647

    CAS  Google Scholar 

  69. Paczal A, Kotschy A (2007) Asymmetric synthesis in ionic liquids. Monatsh Chem 138:1115–1123

    CAS  Google Scholar 

  70. Canton S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas phase. Green Chem 9:954–971

    Google Scholar 

  71. Johnson KE, Pagni RM, Bartmess J (2007) Brønsted acids in ionic liquids: fundamentals, organic reactions, and comparisons. Monatsh Chem 138:1077–1101

    CAS  Google Scholar 

  72. Ranke J, Stolte S, Stormann R et al (2007) Design of sustainable chemical products. Chem Rev 107:2183–2206

    CAS  Google Scholar 

  73. Giernoth R (2007) Homogeneous catalysis in ionic liquids. Top Curr Chem 276:1–23

    CAS  Google Scholar 

  74. Durand J, Teuma E, Gomez M (2007) Ionic liquids as a medium for enantioselective catalysis. Compt Rendus Chim 10:152–157

    CAS  Google Scholar 

  75. Dong Q, Muzny CD, Kazakov A (2007) IL thermo: a free-access web database for thermodynamic properties of ionic liquids. J Chem Eng Data 52:1151–1159

    CAS  Google Scholar 

  76. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    CAS  Google Scholar 

  77. Bankmann D, Giernoth R (2007) Magnetic resonance spectroscopy in ionic liquids. Prog Nucl Magn Reson Spectrosc 51:63–90

    CAS  Google Scholar 

  78. Binnemans K (2007) Lanthanides and actinides in ionic liquids. Chem Rev 107:2592–2614

    CAS  Google Scholar 

  79. Glaser R (2007) Novel process options for the application of zeolites in supercritical fluids and ionic liquids. Chem Eng Tech 30:557–568

    Google Scholar 

  80. Chowdhury S, Mohan RS, Scott JL (2007) Reactivity of ionic liquids. Tetrahedron 63:2363–2389

    CAS  Google Scholar 

  81. Hao J, Zemb T (2007) Self-assembled structures and chemical reactions in room-temperature ionic liquids. Curr Opin Colloid Interface Sci 12:129–137

    CAS  Google Scholar 

  82. Aliaga C, Santos CS, Baldelli S (2007) Surface chemistry of room-temperature ionic liquids. Phys Chem Chem Phys 9:3683–3700

    CAS  Google Scholar 

  83. Liu S, Xiao J (2007) Toward green catalytic synthesis-transition metal-catalyzed reactions in non-conventional media. J Mol Catal A Chem 270:1–43

    CAS  Google Scholar 

  84. Joglekar HG, Rahman I, Kulkarni BD (2007) The path ahead for ionic liquids. Chem Eng Tech 30:819–828

    CAS  Google Scholar 

  85. Keglevich G, Baan Z, Hermecz I et al (2007) The phosphorus aspects of green chemistry. Curr Org Chem 11:107–126

    CAS  Google Scholar 

  86. Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean 35:42–48

    Google Scholar 

  87. Shamsi SA, Danielson ND (2007) Utility of ionic liquids in analytical separations. J Sep Sci 30:1729–1750

    CAS  Google Scholar 

  88. Buszewski B, Studzinska S (2007) A review of ionic liquids in chromatographic and electromigration techniques. Chromatographia 68:1–10

    Google Scholar 

  89. Chen X, Li X, Hua A, Wang F (2008) Advances in chiral ionic liquids derived from natural amino acids. Tetrahedron Asymmetry 19:1–14

    Google Scholar 

  90. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    CAS  Google Scholar 

  91. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126–135

    CAS  Google Scholar 

  92. Congzhen Q, Yonghong C, Quanhui G (2008) Benzene alkylation with long chain olefins catalyzed by ionic liquids. Front Chem Eng China 2:346–352

    Google Scholar 

  93. de Maria PD (2008) “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew Chem Int Ed 47:6960–6968

    Google Scholar 

  94. Sebesta R, Kmentova I, Toma S (2008) Catalysts with ionic tag and their use in ionic liquids. Green Chem 10:484–496

    CAS  Google Scholar 

  95. Tsuda T, Hagiwara R (2008) Chemistry in heterocyclic ammonium fluorohydrogenate room-temperature ionic liquid. J Fluorine Chem 129:4–13

    CAS  Google Scholar 

  96. Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Google Scholar 

  97. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    CAS  Google Scholar 

  98. Haumann M, Riisager A (2008) Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments. Chem Rev 108:1474–1497

    CAS  Google Scholar 

  99. Lopez-Pastor M, Simonet BM, Lendl B et al (2008) Ionic liquids and CE combination. Electrophoresis 29:94–107

    CAS  Google Scholar 

  100. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749

    CAS  Google Scholar 

  101. Kakiuchi T (2008) Mutual solubility of hydrophobic ionic liquids and water in liquid–liquid two-phase systems for analytical chemistry. Anal Sci 24:1221–1230

    CAS  Google Scholar 

  102. Lei Z, Chen B, Li C, Hui L (2008) Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem Rev 108:1419–1455

    CAS  Google Scholar 

  103. Sledz P, Mauduit M, Grela K (2008) Olefin metathesis in ionic liquids. Chem Soc Rev 37:2433–2442

    CAS  Google Scholar 

  104. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    CAS  Google Scholar 

  105. Singh R, Sharma M, Mamgain R et al (2008) Ionic liquids: a versatile medium for palladium-catalyzed reactions. J Braz Chem Soc 19:357–379

    CAS  Google Scholar 

  106. Winkel A, Reddy PVG, Wilhelm R (2008) Recent advances in the synthesis and application of chiral ionic liquids. Synthesis 7:999–1016

    Google Scholar 

  107. Patil ML, Sasai H (2008) Recent developments on chiral ionic liquids: design, synthesis, and applications. Chem Rec 8:98–108

    CAS  Google Scholar 

  108. Luczak J, Hupka J, Thِming J et al (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf A: Physicochem Eng Aspects 329:125–133

    CAS  Google Scholar 

  109. Weingrtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Google Scholar 

  110. Lu J, Yan J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    CAS  Google Scholar 

  111. Green MD, Long TE (2009) Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. J Macromol Sci R, Part C: Polym Rev 49:291–314

    CAS  Google Scholar 

  112. Trombetta F, de Souza MO, de Souza RF et al (2009) Electrochemical behavior of aluminum in 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid electrolytes for capacitor applications. J Appl Electrochem 39:2315–2321

    CAS  Google Scholar 

  113. Pavlinac J, Zupan M, Laali KK et al (2009) Halogenation of organic compounds in ionic liquids. Tetrahedron 65:5625–5662

    CAS  Google Scholar 

  114. Bermudez MD, Jimenez AE, Sanes J et al (2009) Ionic liquids as advanced lubricant fluids. Molecules 14:2888–2908

    CAS  Google Scholar 

  115. Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38:2590–2599

    CAS  Google Scholar 

  116. Lewandowski A, Swiderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J Power Sources 194:601–609

    CAS  Google Scholar 

  117. Kubisa P (2009) Ionic liquids as solvents for polymerization processes-progress and challenges. Prog Polym Sci 34:1333–1347

    CAS  Google Scholar 

  118. Minami I (2009) Ionic liquids in tribology. Molecules 14:2286–2305

    CAS  Google Scholar 

  119. Xu Y, Wang E (2009) Ionic liquids used in and analyzed by capillary and microchip electrophoresis. J Chromatogr A 1216:4817–4823

    CAS  Google Scholar 

  120. Gibson HW (2009) Ionic liquids and their derivatives in polymer science and engineering. J Macromol Sci R, Part C: Polym Rev 49:289–290

    CAS  Google Scholar 

  121. Xie M, Han H, Ding L et al (2009) Promotion of atom transfer radical polymerization and ring-opening metathesis polymerization in ionic liquids. J Macromol Sci R, Part C: Polym Rev 49:315–338

    CAS  Google Scholar 

  122. Green O, Grubjesic S, Lee S et al (2009) The design of polymeric ionic liquids for the preparation of functional materials. J Macromol Sci R, Part C: Polym Rev 49:339–360

    CAS  Google Scholar 

  123. Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid. Green Chem 12:17–30

    CAS  Google Scholar 

  124. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637

    CAS  Google Scholar 

  125. Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286

    CAS  Google Scholar 

  126. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    CAS  Google Scholar 

  127. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis. Appl Catal A: Gen 373:1–56

    CAS  Google Scholar 

  128. Hasibur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture. Chem Eng Process 49:313–322

    CAS  Google Scholar 

  129. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids. J Chem Technol Biotechnol 85:891–907

    CAS  Google Scholar 

  130. Martinez-Palou R (2010) Microwave-assisted synthesis using ionic liquids. Mol Divers 14:3–25

    CAS  Google Scholar 

  131. Moniruzzaman M, Nakashima K, Kamiya N et al (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314

    CAS  Google Scholar 

  132. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426

    CAS  Google Scholar 

  133. Giernoth R (2010) Task-specific ionic liquids. Angew Chem Int Ed 49:2834–2839

    CAS  Google Scholar 

  134. Bellina F, Chiappe C (2010) The heck reaction in ionic liquids. Molecules 15:2211–2245

    CAS  Google Scholar 

  135. Aguilera-Herrador E, Lucena R, Cardenas S et al (2010) The roles of ionic liquids in sorptive microextraction techniques. Trends Anal Chem 29:602–616

    CAS  Google Scholar 

  136. Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53

    CAS  Google Scholar 

  137. Hurley FH, Wier TP (1951) Electrodeposition of metals from fused quaternary ammonium salts. J Electrochem Soc 98:203–206

    CAS  Google Scholar 

  138. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967

    Google Scholar 

  139. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350

    CAS  Google Scholar 

  140. MacFarlane DR, Meakin P, Sun J et al (1999) Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J Phys Chem B 103:4164–4170

    CAS  Google Scholar 

  141. Wasserscheid P, Welton T (2007) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  142. Jessop PG, Heldebrant DJ, Li X et al (2005) Reversible nonpolar-to-polar solvent. Nature 436:1102

    CAS  Google Scholar 

  143. Olah GA, Mathew T, Goeppert A et al (2005) Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation. J Am Chem Soc 127:5964–5969

    CAS  Google Scholar 

  144. Rodrıguez O, Madeira PP, Macedo EA (2008) Gibbs free energy of transfer of a methylene group in buffer ionic liquid biphasic systems. Ind Eng Chem Res 47:5165–5168

    Google Scholar 

  145. Schmidt-Naake G, Woecht I, Schmalfuß A et al (2009) Free adical polymerization in ionic liquids-solvent influence of new dimension. Macromol Symp 275–276:204–218

    Google Scholar 

  146. Castner EW, Wishart JF (2010) Spotlight in ionic liquids. J Chem Phys 132:120901–120909

    Google Scholar 

  147. Tosi MP, Price DL, Saboungi ML (1993) Ordering in metal halide melts. Annu Rev Phys Chem 44:173–211

    CAS  Google Scholar 

  148. Dyzuba SV, Bartsch RA (2001) New room-temperature ionic liquids with C2-symmetrical imidazolium cations. Chem Commun 16:1466–1467

    Google Scholar 

  149. Merringan TL, Bates ED, Dorman SC et al (2000) Chem Commun 20:2051–2052

    Google Scholar 

  150. Visser AE, Swatloski RP, Rogers RD (2001) So you think your process is green, how do you know? Green Chem 2:1–6

    Google Scholar 

  151. Holbrey JD, Seddon KR, Rogers RD (1999) Clean Prod Process 1:223–236

    Google Scholar 

  152. Rogers RD, Seddon KR (2002) In ionic liquids: industrial applications to green chemistry, vol 818, ACS Symposium Series. American Chemical Society, Washington, DC

    Google Scholar 

  153. Shariati A, Peters CJ (2005) High pressure phase equilibria of systems with ionic liquids. J Supercrit Fluids 34:171–176

    CAS  Google Scholar 

  154. Brinchi L, Germani R, Savelli G (2003) Ionic liquids as reaction media for esterification of carboxylate sodium salts with alkyl halides. Tetrahedron Lett 44:2027–2029

    CAS  Google Scholar 

  155. Holbrey JD, Reichert WM, Swatloski RP et al (2002) Efficient, halide free synthesis of new low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem 4:407–413

    CAS  Google Scholar 

  156. Golding JJ, MacFarlane DR, Spiccia L (1998) Weak intermolecular interactions in sulfonamide salts: structure of 1-ethyl-2-methyl-3-benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide. Chem Commun 15:1593–1594

    Google Scholar 

  157. Polyakov OG, Ivanova SM, Gaudinski CM et al (1999) Cu(CO)2(N(SO2CF3)2). The first structurally characterized copper(I) polycarbonyl. Organometallics 18:3769–3771

    CAS  Google Scholar 

  158. Pringle JM, Golding J, Baranyai K et al (2003) The effect of anion fluorination in ionic liquids-physical properties of a range of bis(methanesulfonyl)amide salts. New J Chem 27:1504–1510

    CAS  Google Scholar 

  159. Poole SK, Shetty PH, Poole CF (1989) Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Anal Chim Acta 218:241–264

    CAS  Google Scholar 

  160. Holbrey JD, Reichert WM, Nieuwenhuyzen M (2003) Liquid clathrate formation in ionic liquid–aromatic mixtures. Chem Commun 476–477

    Google Scholar 

  161. Mirzaei YR, Twamley B, Shreeve JM (2002) Syntheses of 1-alkyl-1,2,4-triazoles and the formation of quaternary 1-alkyl-4-polyfluoroalkyl-1,2,4-triazolium salts leading to ionic liquids. J Org Chem 67:9340–9345

    CAS  Google Scholar 

  162. Pagni RM (1987) In: Mamantov G, Mamantov CB, Braunstein J (eds) Advances in molten salt chemistry. Elsevier, New York, pp 211–346

    Google Scholar 

  163. Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A Gen 222:101–117

    CAS  Google Scholar 

  164. Evans DF, Yamouchi A, Wei GJ et al (1983) Micelle size in ethylammonium nitrate as determined by classical and quasi-elastic light scattering. J Phys Chem 87:3537–3541

    CAS  Google Scholar 

  165. Lee CK, Huang HW, Lin IJB (2000) Simple amphiphilic liquid crystalline N-alkylimidazolium salts. A new solvent system providing a partially ordered environment. Chem Commun 1911–1912

    Google Scholar 

  166. Gordon CM, Holbrey JD, Kennedy AR et al (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–1636

    CAS  Google Scholar 

  167. Kitazume T, Zulfiqar F, Tanaka G (2000) Molten salts as a reusable medium for the preparation of heterocyclic compounds. Green Chem 2:133–136

    CAS  Google Scholar 

  168. Visser AE, Swatloski RP, Reichert WM et al (2008) Ionic liquids in microemulsions. Environ Sci Technol 36:2523–2529

    Google Scholar 

  169. Hurley FH, Weir TP (1951) The electrodeposition of aluminum from nonaqueous solutions at room temperature. J Electrochem Soc 98:207–212

    CAS  Google Scholar 

  170. Huddleston JG, Willauer HD, Swatlowski RP et al (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 1765–1766

    Google Scholar 

  171. Fuller J, Carlin RT, DeLong HC et al (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. Chem Commun 299–300

    Google Scholar 

  172. Pomaville RM, Poole SK, Davis LJ et al (1998) Solute–solvent interactions in tetra-n-butylphosphonium salts studied by gas chromatography. J Chromatogr 438:1–14

    Google Scholar 

  173. Matsumoto H, Matsuda T, Miyazaki Y (2000) Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 29:1430–1431

    Google Scholar 

  174. Bonhote P, Dias AP, Papageorgiou N et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    CAS  Google Scholar 

  175. Lancaster NL, Welton T, Young GB (2001) A study of halide nucleophilicity in ionic liquids. J Chem Soc Perkin Trans 2:2267–2270

    Google Scholar 

  176. Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–51200

    CAS  Google Scholar 

  177. Fuller J, Carlin RT (1999) Proc Electrochem Soc 98:227–230

    Google Scholar 

  178. Endres F, El Abedinw SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    CAS  Google Scholar 

  179. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermochim Acta 412:47–53

    CAS  Google Scholar 

  180. Ohno Y (2005) Electrochemical aspects ionic liquids. John Wiley Sons Inc., New Jersey

    Google Scholar 

  181. Wasserscheid P, van Hal R, Bosmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate-an even ‘greener’ ionic liquid. Green Chem 4:400–404

    CAS  Google Scholar 

  182. Tran CD, Lacerda SDP, Oliveira D (2003) Absorption of water by room temperature ILs: effect of anions on concentration and state of water. Soc Appl Spectrosc 57:152–157

    CAS  Google Scholar 

  183. Fukaya Y, Iizuka Y, Sekikawa K et al (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9:1155–1157

    CAS  Google Scholar 

  184. Abbott AP, Boothby D, Capper G et al (2004) Model studies on p-hydroxybenzoate hydroxylase. J Am Chem Soc 126:127–142

    Google Scholar 

  185. Yu Y, Lu X, Zhou Q et al (2008) Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure-biodegradation relationship. Chem Eur J 14:11174–11182

    CAS  Google Scholar 

  186. Weingartner H, Sasisanker P, Daguenet C et al (2007) The dielectric response of room-temperature ionic liquids: effect of cation variation. J Phys Chem B 111:4775–4780

    Google Scholar 

  187. Ranieri G, Hallett JP, Welton T (2008) Nucleophilic reactions at cationic centers in ionic liquids and molecular solvents. Ind Eng Chem Res 47:638–644

    CAS  Google Scholar 

  188. Aggarwal A, Lancaster NL, Sethi AR et al (2002) The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactions in room-temperature ionic liquids. Green Chem 2:517–520

    Google Scholar 

  189. Crowhurst L, Mawdsley P, Perez-Arlandis JM (2003) Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794

    CAS  Google Scholar 

  190. Crowhurst L, Falcone R, Lancaster NL (2006) Using Kamlet-Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids. J Org Chem 71:8847–8853

    CAS  Google Scholar 

  191. Betti C, Landini D, Maia A (2008) Reactivity of anionic nucleophiles in ionic liquids and molecular solvents. Tetrahedron 64:1689–1695

    CAS  Google Scholar 

  192. Hallett JP, Liotta CL, Ranieri G et al (2009) Charge screening in the SN2 reaction of charged electrophiles and charged nucleophiles: an ionic liquid effect. J Org Chem 74:1864–1868

    CAS  Google Scholar 

  193. Dimitrakis G, Villar Garcia IJ, Lester E (2008) Dielectric spectroscopy: a technique for the determination of water coordination within ionic liquids. Phys Chem Chem Phys 10:2947–2951

    CAS  Google Scholar 

  194. Amigues E, Hardacre C, Keane G et al (2006) Ionic liquids-media for unique phosphorus chemistry. Chem Commun 72–74

    Google Scholar 

  195. Dorbritz S, Ruth W, Kragl U (2005) Investigation on aggregate formation of ionic liquids. Adv Synth Catal 347:1273–1279

    CAS  Google Scholar 

  196. Lachwa J, Szydlowski J, Makowska A et al (2006) Changing from an unusual high-temperature demixing to a UCST-type in mixtures of 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide and arenes. Green Chem 8:262–267

    CAS  Google Scholar 

  197. Ma JC, Dougherty DA (1997) The cation – π interaction. Chem Rev 97:1303–1324

    CAS  Google Scholar 

  198. Gutel T, Santini CC, Padua AAH et al (2009) Interaction between the π-system of toluene and the imidazolium ring of ionic liquids. J Phys Chem B 113:170–177

    CAS  Google Scholar 

  199. Gausepohl R, Buskens P, Kleinen J et al (2006) Highly enantioselective aza-Baylis–Hillman reaction in a chiral reaction medium. Angew Chem Int Ed 45:3689–3695

    CAS  Google Scholar 

  200. Baudequin C, Bregeon D, Levillain J (2005) Chiral ionic liquids, a renewal for the chemistry of chiral solvents. Tetrahedron Asymmetry 16:3921–3945

    CAS  Google Scholar 

  201. Ishida Y, Sasaki D, Miyauchi H et al (2004) Design and synthesis of novel imidazolium-based ionic liquids with a pseudo crown-ether moiety: diastereomeric interaction of a racemic ionic liquid with enantiopure europium complexes. Tetrahedron Lett 45:9455–9459

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellence in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mallakpour, S., Dinari, M. (2012). Ionic Liquids as Green Solvents: Progress and Prospects. In: Mohammad, A., Inamuddin, D. (eds) Green Solvents II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2891-2_1

Download citation

Publish with us

Policies and ethics