Skip to main content

Neurobiology of the Fish Lateral Line: Adaptations for the Detection of Hydrodynamic Stimuli in Running Water

  • Chapter
The Senses of Fish

Abstract

All fishes possess a lateral line system, which serves as a receptor for hydrodynamic stimuli such as those generated by conspecifics, predators or prey. The lateral line is comprised of numerous individual sensory units, the neuromasts, which can occur freestanding on the surface of the skin or embedded in subepidermal canals. The morphological design of the peripheral lateral line can be quite different in different fish species and is thought to represent an adaptation to the hydrodynamic conditions that prevail in the habitat of a given species. However, despite gross morphological differences, the general physiology of the peripheral lateral line appears to be quite similar in different fish species at least when the system is studied under still water conditions. In contrast to the peripheral lateral line that has been studied extensively, much less is known about the processing of hydrodynamic information by lateral line neurons in the fish brain. In addition, not much is known about the processing of naturally occurring hydrodynamic stimuli. In order to understand how the lateral line functions under more natural stimulus conditions, complex water motions generated by moving sources have been used as lateral line stimuli and the system has been studied under running water conditions. This chapter summarizes the main result from these studies, which have, for the first time, revealed a clear form-function relationship for the lateral line system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker C.F., Montgomery J.C. (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J. Comp. Physiol. A 184: 519–527.

    Article  Google Scholar 

  • Bleckmann H. (1993) Role of the lateral line in fish behavior. In: Pitcher T.J. (Ed.) Behaviour of Teleost Fishes. Chapman & Hall, London, pp 201–246.

    Chapter  Google Scholar 

  • Bleckmann H. (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W. (Ed.) Progress in Zoology. Volume 41 Gustav Fischer, Stuttgart, Jena, New York, pp 1415.

    Google Scholar 

  • Bleckmann H. (1998) Special senses. In: Hamlett W.C. (Ed.) Biology of Elasmobranch Fishes. Johns Hopkins University Press, Baltimore, pp 300–328.

    Google Scholar 

  • Bleckmann H., Münz H. (1988) The anatomy and physiology of lateral line mechanoreceptors in teleots with multiple lateral lines. In: Barth F.G. (Ed.) Verh. Dtsch. Zool. Ges. 81, Gustav Fischer, Stuttgart, pp 288.

    Google Scholar 

  • Bleckmann H., Münz H. (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav. Evol. 35: 240–250.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H., Breithaupt R., Blickhan R., Tautz J. (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J. Comp. Physiol. A 168: 749–757.

    PubMed  CAS  Google Scholar 

  • Bleckmann H., Zelick R. (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J. Comp. Physiol. A 172: 115–128.

    Article  Google Scholar 

  • Blickhan R., Krick C., Breithaupt T., Zehren D., Nachtigall W. (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79: 220–221.

    Article  Google Scholar 

  • Caird D.M. (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J. Comp. Physiol. A 127: 61–74.

    Article  Google Scholar 

  • Coombs S., Montgomery J.C. (1999) The enigmatic lateral line system. In: Fay R.R., Popper A.N. (Eds.) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research. Springer, New York, pp 319–362.

    Chapter  Google Scholar 

  • Coombs S., Janssen J., Webb J.F. (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J., Fay R.R., Popper A.N., Tavolga W.N. (Eds.) Sensory Biology of Aquatic Animals. Springer, New York, pp 553–593.

    Chapter  Google Scholar 

  • Coombs S., Fay R.R., Janssen J. (1989) Hot-film anemometry for measuring lateral line stimuli. J. Acoust. Soc. Am. 85: 2185–2193.

    Article  PubMed  CAS  Google Scholar 

  • Coombs S., Hastings M., Finneran J. (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J. Comp. Physiol. A 178: 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Coombs S., Mogdans J., Halstead M., Montgomery J. (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J. Comp. Physiol. A 182: 609–626.

    Article  Google Scholar 

  • Coombs S., Braun C.B., Donovan B. (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J. Exp. Biol. 204: 337–348.

    PubMed  CAS  Google Scholar 

  • Denton E.J., Gray J.A.B. (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J., Fay R.R., Popper A.N., Tavolga W.N. (Eds.) Sensory Biology of Aquatic Animals. Springer, New York, pp 595–617.

    Chapter  Google Scholar 

  • Denton E.J., Gray J.A.B. (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S., Görner P., Münz H. (Eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 229–246

    Chapter  Google Scholar 

  • Dijkgraaf S. (1963) The functioning and significance of the lateral line organs. Biol. Rev. 38: 51–106.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J., Hanke W., Mogdans J., Bleckmann H. (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408: 51–52.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J., Hanke W., Bleckmann H. (2002) Lateral line reception in still and running water. J. Comp. Physiol. A 188: 513–526.

    Article  CAS  Google Scholar 

  • Enger P.S., Kalmijn A.J., Sand O. (1989) Behavioral investigations on the functions of the lateral line and inner ear in prédation. In: Coombs S., Görner P., Münz H. (Eds.), The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp. 575–587.

    Chapter  Google Scholar 

  • Flock Å. (1965) Electronmicroscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol. 199: 1–90.

    Google Scholar 

  • Flock Å., Wersäll J. (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J. Cell Biol. 15: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Görner P. (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). J. Comp. Physiol. A 47: 316–338.

    Google Scholar 

  • Hanke W., Bleckmann H. (1999) Flow visualization and particle image velocimetry with a custom made inexpensive device. In: Zissler D. (Ed.) Verh. Dtsch. Zool. Ges., Gustav Fischer, Stuttgart, p 352.

    Google Scholar 

  • Hanke W., Brücker C., Bleckmann H. (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J. Exp. Biol. 203: 1193–1200.

    PubMed  CAS  Google Scholar 

  • Harris G.G., Bergeijk W.A. van (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. Am. 34: 1831–1841.

    Article  Google Scholar 

  • Janssen J. (2003) Lateral Line Sensory Ecology. In: Emde von der G., Mogdans J., Kapoor B.G. (Eds.); The Senses of Fishes: Adaptations for the Reception of Natural Stimuli. Narosa, New Delhi, pp. 231–264.

    Google Scholar 

  • Kalmijn A.J. (1989) Functional evolution of lateral line and inner ear sensory systers. In: Coombs S., Görner P., Münz H. (Eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 187–216.

    Chapter  Google Scholar 

  • Kirk K.L. (1985) Water flows produced by Daphnia and Diaptomus: Implications for prey selection by mechanosensory predators. Limnol. Oceanogr. 30: 679–686.

    Article  Google Scholar 

  • Kroese A.B.A., Netten S.M. van (1989) Sensory transduction in lateral line hair cells. In: Coombs S., Görner P., Münz H. (Eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 265–284.

    Chapter  Google Scholar 

  • Kroese A.B.A., Schellart N.A.M. (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophysiol. 68: 2212–2221.

    PubMed  CAS  Google Scholar 

  • Kröther A., Mogdans J., Bleckmann H. (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J. Exp. Biol. 205: 1471–1484.

    PubMed  Google Scholar 

  • McCormick C.A., Hernandez D.V. (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav. Evol. 47: 113–138.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J., Bleckmann H. (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp. Physiol. A 182: 659–676.

    Article  Google Scholar 

  • Mogdans J., Bleckmann H. (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J. Comp. Physiol. A 185: 173–180.

    Article  Google Scholar 

  • Mogdans J., Goenechea L. (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102: 227–237.

    Google Scholar 

  • Mogdans J., Bleckmann H. (2001) The mechanosensory lateral line of jawed fishes. In: Kapoor B.G. (Ed.) Sensory Biology of Jawed Fishes — New Insights. Oxford and IBH Publishing Co Pvt Ltd, New Delhi, pp 181–213.

    Google Scholar 

  • Mogdans J., Kröther S. (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104: 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J., Bleckmann H., Menger N. (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav. Evol. 50: 261–283.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J., Wojtenek W., Hanke W. (1999) The puzzle of hydrodynamic information processing: how are complex water motions analyzed by the lateral line? Europ. J. Morphol. 37: 195–199.

    Article  CAS  Google Scholar 

  • Montgomery J.C., Coombs S. (1992) Physiological characterization of lateral line function in the Antarctic fish (Trematodus bemacchii). Brain Behav. Evol. 40: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J.C., Coombs S., Janssen J. (1994) Form-function relationships in lateral line systems: com-parative data from six species of antarctic notothenioid fish. Brain Behav. Evol. 44: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J.C., Coombs S., Conley R.S., Bodznick D. (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: A comparative overview of anatomical and functional similarities. Auditory Neurosci. 1: 207–231.

    Google Scholar 

  • Montgomery J., Bodznick D., Halstead M. (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scorpaena papillosus. J. Exp. Biol. 199: 893–899.

    PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963.

    Article  CAS  Google Scholar 

  • Müller U. (1984) Anatomische und physiologische Anpassungen des Seitenliniensystems von Pantodon buchholzi an den Lebensraum Wasseroberfläche. Dissertation, Universität Gießen 1–201.

    Google Scholar 

  • Münz H. (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorphol. 93: 73–86.

    Article  Google Scholar 

  • Münz H. (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J. Comp. Physiol. A 157: 555–568.

    Article  Google Scholar 

  • Münz H. (1989) Functional organization of the lateral line periphery. In: Coombs S., Görner R., Münz H. (eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 285–298.

    Chapter  Google Scholar 

  • Netten S.M. van, Kroese A.B.A. (1987) Laser interferometric measurement on the dynamic behavior of the cupula in the fish lateral line. Hearing Res 29: 55–61.

    Article  Google Scholar 

  • Netten S.M. van, Kroese A.B.A. (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S., Görner R., Münz H. (Eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 247–264.

    Chapter  Google Scholar 

  • Netten S.M. van, Kelly J.R, Khanna S.M. (1990) Dynamic responses of the cupula in the fish lateral line are spatially nonuniform. Association for Research in Otolaryngology 341–342.

    Google Scholar 

  • New J.G., Coombs S., McCormick C.A., Oshel P.E. (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J. Comp. Neurol. 366: 534–546.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt R.G. (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S., Görner R., Münz H. (Eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 17–78.

    Chapter  Google Scholar 

  • Paul D.H., Roberts B.L. (1977) Studies on a primitive cerebellar cortex. III. The projections of the anterior lateral-line nerve to the lateral-line lobes of the dogfish brain. Proc. R. Soc. Lond. B 195: 479–496.

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann et al. 2001 Pohlmann K., Grasso F.W., Breithaupt T. (2001) Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proc. Natl. Acad. Sci. 98: 7371–7374.

    Article  PubMed  CAS  Google Scholar 

  • Puzdrowski R.L. (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav. Evol. 34: 110–131.

    Article  PubMed  CAS  Google Scholar 

  • Satou M., Shiraishi A., Matsushima T., Okumoto N. (1991) Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka). J. Comp. Physiol. A 168: 417–428.

    Article  Google Scholar 

  • Song J., Northcutt R.G. (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav. Evol. 37: 10–37.

    Article  PubMed  CAS  Google Scholar 

  • Vischer H.A. (1990) The morphology of the lateral line system in three species of Pacific cottoid fishes occupying disparate habitats. Experientia 46: 244–250.

    Article  Google Scholar 

  • Voigt R., Carton A.G., Montgomery J.C. (2000) Responses of anterior lateral line afferent neurones to water flow. J. Exp. Biol. 203: 2495–2502.

    PubMed  CAS  Google Scholar 

  • Webb J.F. (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S., Görner R., Münz H. (Eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 79–98.

    Chapter  Google Scholar 

  • Wetzel R.G. (1983) Limnology. Saunders College Publishing, New York.

    Google Scholar 

  • Wubbels R.J., Kroese A.B.A., Schellart N.A.M. (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 179: 77–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mogdans, J., Kröther, S., Engelmann, J. (2004). Neurobiology of the Fish Lateral Line: Adaptations for the Detection of Hydrodynamic Stimuli in Running Water. In: von der Emde, G., Mogdans, J., Kapoor, B.G. (eds) The Senses of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1060-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1060-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3779-2

  • Online ISBN: 978-94-007-1060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics