Skip to main content

Precision Agriculture: Proximal Soil Sensing

  • Reference work entry
  • First Online:
Encyclopedia of Agrophysics

Synonyms

On-the-Go Soil Sensing

Definitions

Precision agriculture: A management strategy that is based on information technologies implemented to optimize production agriculture.

Proximal soil sensing: Metering and data processing technology that allows in situ determination of physical, chemical, and other soil characteristics while placing sensor systems in close proximity to the soil being evaluated.

On-the-go soil sensing: Use of proximal soil sensing technologies while moving across a landscape.

Introduction

The concept of precision agriculture emerged from the belief that the variability of plant growing conditions is one of the major contributors to field-scale differences in yield, and that varying agricultural inputs according to local changes in soil properties could be beneficial. To engage in an effective decision-making process, it is important to obtain high-quality information about the spatial variability of different soil attributes that may limit yield in specific...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., and Upadhyaya, S. K., 2004. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44, 71–91.

    Google Scholar 

  • Adamchuk, V. I., Lund, E., Sethuramasamyraja, B., Morgan, M. T., Dobermann, A., and Marx, D. B., 2005. Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Computers and Electronics in Agriculture, 48, 272–294.

    Google Scholar 

  • Allred, B. J., Groom, D., Ehsani, M. R., and Daniels, J. J., 2008. Resistivity methods. In Allred, B. J., et al. (eds.), Handbook of Agricultural Geophysics. Boca Raton, FL: CRC Press, pp. 85–108.

    Google Scholar 

  • Artigas, J., Beltran, A., Jimenez, C., Baldi, A., Mas, R., Dominguez, C., and Alonso, J., 2001. Application of ion sensitive field effect transistor based sensors to soil analysis. Computers and Electronics in Agriculture, 31, 281–293.

    Google Scholar 

  • Christy, C. D., 2008. Real-time measurements of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture, 61, 10–19.

    Google Scholar 

  • Daniels, J. J., Vendl, M., Ehsani, M. R., and Allred, B. J., 2008a. Electromagnetic induction methods. In Allred, B. J., et al. (eds.), Handbook of Agricultural Geophysics. Boca Raton, FL: CRC Press, pp. 109–128.

    Google Scholar 

  • Daniels, J. J., Ehsani, M. R., and Allred, B. J., 2008b. Ground-penetrating radar methods (GPR). In Allred, B. J., et al. (eds.), Handbook of Agricultural Geophysics. Boca Raton, FL: CRC Press, pp. 129–145.

    Google Scholar 

  • Hemmat, A., and Adamchuk, V. I., 2008. Sensor systems for measuring spatial variation in soil compaction. Computers and Electronics in Agriculture, 63, 89–103.

    Google Scholar 

  • Hendriks, P. H. G. M., Limburg, J., and de Meijer, R. J., 2001. Full-spectrum analysis of natural γ-ray spectra. Journal of Environmental Radioactivity, 53, 365–380.

    CAS  PubMed  Google Scholar 

  • Hummel, J. W., Gaultney, L. D., and Sudduth, K. A., 1996. Soil property sensing for site-specific crop management. Computers and Electronics in Agriculture, 14, 121–136.

    Google Scholar 

  • Mouazen, A. M., Kuang, B., De Baerdemaeker, J., and Ramon, H., 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma (in press)

    Google Scholar 

  • Shibusawa, S., 2006. Soil sensors for precision agriculture. In Srinivasan, A. (ed.), Handbook of Precision Agriculture. Principles and Applications. New York: Food Products Press, pp. 57–90.

    Google Scholar 

  • Sudduth, K. A., Hummel, J. W., and Birrell, S. J., 1997. Sensors for site-specific management. In Pierce, F. T., and Sadler, E. J. (eds.), The State of Site-Specific Management for Agriculture. Madison, WI: ASA-CSSA-SSSA, pp. 183–210.

    Google Scholar 

  • Talibudeen, O., 1991. Ion-selective electrodes. In Smith, K. A. (ed.), Soil Analysis. Modern Instrumental Techniques. New York: Marcel Dekker, pp. 111–182.

    Google Scholar 

  • Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., and Skjemstad, J. O., 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75.

    CAS  Google Scholar 

  • Viscarra Rossel, R. A., Taylor, H. J., and McBratney, A. B., 2007. Multivariate calibration of hyperspectral gamma-ray energy spectra for proximal soil sensing. European Journal of Soil Science, 58, 343–353.

    Google Scholar 

  • Viscarra Rossel, R., Cattle, S., Ortega, A., and Fouad, Y., 2009. In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy. Geoderma, 150, 253–266.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viacheslav I. Adamchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Adamchuk, V.I., Viscarra Rossel, R.A. (2011). Precision Agriculture: Proximal Soil Sensing. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_126

Download citation

Publish with us

Policies and ethics