Skip to main content

Ion Pumping by Calcium ATPase of Sarcoplasmic Reticulum

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

Abstract

Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) is an integral membrane protein of 110K and the best characterised member of the P-type (or E1/E2-type) ion translocating ATPases. It was first identified by Ebashi in the “relaxing factor” of muscle contraction and gave rise to the calcium theory that Ca2+ is a fundamental and ubiquitous factor in the regulation of intracellular processes.1 There are several types of Ca2+-ATPases in different tissues; all transfer Ca2+ from the cytoplasm to the opposite side of the membrane and countertransport H+. Stoichiometry of Ca2+: ATP may be variable but it is well established that SERCA1a can transfer two Ca2+ per ATP hydrolysed.2 In the sarcoplasmic reticulum (SR) membrane, Ca2+-ATPase pumps Ca2+, released into muscle cells during muscle contraction, back into SR, thereby relaxes muscle cells. This pump runs as long as ATP and Ca2+ are present, and establishes more than 104-fold concentration gradient across membranes. According to the classical E1/E2 theory, transmembrane Ca2+-binding sites have high affinity and face the cytoplasm in E1; in E2, the binding sites have low affinity and face the lumen of SR (extracellular side).2,3 Actual transfer of bound Ca2+ is thought to take place between two phosphorylated intermediates, E1P and E2P, in exchange of H+. Because 2 Ca2+ are transferred in the forward direction and 2 to 3 protons in the opposite direction, active transport of Ca2+ is an electrogenic process. Although no H+ gradient is built up across the SR membrane because it is leaky to H+, this Ca2+/H+ exchange may cause pathological pH effects with plasma membrane Ca2+-ATPase.4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

25.7. References

  1. S. Ebashi, and F. Lipman, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell Biol. 14, 389–400 (1962).

    Article  CAS  PubMed  Google Scholar 

  2. J. V. Møller, B. Juul, and M. le Maire, Structural organization, ion transport, and energy transduction of P-type ATPases, Biochim. Biophys. Acta 1286, 1–51 (1996).

    PubMed  Google Scholar 

  3. L. de Meis, and A. L. Vianna, Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem. 48, 275–292 (1979).

    Article  PubMed  Google Scholar 

  4. A. M. Mata, and M. R. Sepúlveda, Caclium pumps in the central nervous system, Brain Res. Rev. 49, 398–405 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. S. R. Denmeade, and J. T. Isaacs, The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer, Cancer Biol. Ther. 4, 14–22 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. U. Eckstein-Ludwig, R. J. Webb, I. D. A. van Goethem, J. M. East, A. G. Lee, M. Kimura, P. M. O’Neill, P. G. Bray, S. A. Ward, and S. Krishna, Artemisinins target the SERCA of Plasmodium falciparum, Nature 424, 957–960 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. D. H. MacLennan, and E. G. Kranias, Phospholamban: a crucial regulator of cardiac contractility, Nature Rev. Mol. Cell Biol. 4, 566–567 (2003).

    Article  CAS  Google Scholar 

  8. C. Toyoshima, M. Nakasako, H. Nomura, and H. Ogawa,. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution, Nature 405, 647–655 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. C. Toyoshima, and H. Nomura, Structural changes in the calcium pump accompanying the dissociation of calcium, Nature 418, 605–611 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. C. Toyoshima, and T. Mizutani, Crystal structure of the calcium pump with a bound ATP analogue, Nature 430, 529–535 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. C. Toyoshima, H. Nomura, and T. Tsuda, Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues, Nature 432, 361–368, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. K. Obara, N. Miyashita, C. Xu, I. Toyoshima, Y. Sugita, G. Inesi, and C. Toyoshima, Structural role of countertransport revealed in Ca2+-pump crystal structure in the absence of Ca2+, Proc. Natl. Acad. Sci. USA 102, 14489–14496 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Sugita, N. Miyashita, M. Ikeguchi, A. Kidera, and C. Toyoshima, Protonation of the acidic residues in the transmembrane cation-binding sites of the Ca2+-pump, J. Am. Chem. Soc. 127, 6150–6151 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. C. Toyoshima, and G. Inesi, Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem 73, 269–292 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. W. Kühlbrandt, Biology, structure and mechanism of P-type ATPases, Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. J. D. Clausen, B. Vilsen, D. B. McIntosh, A. P. Einholm, and J. P. Andersen, Glutamate-183 is the conserved TGES motif of domain A of sarcoplasmic reticulum Ca2+-ATPase assists in catalysis of E 2/E 2P partial reactions, Proc. Natl. Acad. Sci. USA 101, 2776–2781 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. H. Ma, D. Lewis, C. Xu, G. Inesi, and C. Toyoshima, Functional and structural roles of critical amino acids within the “N,” “P” and “A” domains of the Ca2+ ATPase (SERCA) headpiece, Biochemistry 44, 8090–8100 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. L. Aravind, M. Y. Galperin, and E. V. Koonin, The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold, Trends Biochem. Sci. 23, 127–129 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. L. N. Johnson, and R. J. Lewis, Structural basis for control by phosphorylation, Chem. Rev. 101, 2209–2242 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. J. D. Clausen, D. B. McIntosh, B. Vilsen, D. G. Woolley, and J. P. Andersen, Importance of conserved N-domain residues Thr441, Glu442, Lys515, Arg560, and Leu562 of sarcoplasmic reticulum Ca2+-ATPase for MgATP binding and subsequent catalytic steps, J. Biol. Chem. 278, 20245–20258 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. T. L. Sørensen, J. V. Møller, and P. Nissen, Phosphoryl transfer and calcium ion occlusion in the calcium pump, Science 304, 1672–1675 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. C. Olesen, T. L. Sørensen, R. C. Nielsen, J. V. Møller, and P. Nissen, Dephosphorylation of the calcium pump coupled to counterion occlusion, Science 306, 2251–2255 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. G. Inesi, M. Kurzmack, C. Coan, and D. E. Lewis, Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles, J. Biol. Chem. 255, 3025–3031 (1980).

    PubMed  CAS  Google Scholar 

  24. Z. Zhang, D. Lewis, C. Strock, G. Inesi, M. Nakasako, H. Nomura, and C. Toyoshima, Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase, Biochemistry 39, 8758–8767 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. G. Inesi, H. Ma, D. Lewis, and C. Xu, Ca2+ Occlusion and gating function of Glu309 in the ADP-Fluoro-aluminate analog of the Ca2+-ATPase phosphoenzyme intermediate, J. Biol. Chem. 279, 31629–31637 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. S. Danko, T. Daiho, K. Yamasaki, M. Kamidochi, H. Suzuki, and C. Toyoshima, ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin, FEBS Lett. 489, 277–282 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. S. Danko, K. Yamasaki, T. Daiho, H. Suzuki, and C. Toyoshima, Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E1P and E1ATP states: a limited proteolysis study, FEBS Lett. 505, 129–135 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. M. Picard, C. Toyoshima, and P. Champeil, Effects of inhibitors on luminal opening of Ca2+ binding sites in an E2P-like complex of sarcoplasmic reticulum Ca2+-ATPase with Be2+-fluoride, J. Biol. Chem. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Toyoshima, C. (2007). Ion Pumping by Calcium ATPase of Sarcoplasmic Reticulum. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_25

Download citation

Publish with us

Policies and ethics