Skip to main content

Angiosperm Phylogeny: A Framework for Studies of Genome Evolution

  • Chapter
  • First Online:

Abstract

Our understanding of plant phylogeny has improved dramatically in recent years through large-scale collaborative analyses and the application of molecular data, from single genes to entire plastid genomes. Likewise, many clade-specific analyses have clarified relationships within some of the largest groups of angiosperms. Recent advances in angiosperm phylogenetics in particular have played a significant role in selecting taxa for genetic analysis and genome sequencing. Here we summarize current methods in phylogeny reconstruction and look toward future, large-scale approaches. Finally, we provide an overview of plant phylogeny, with an emphasis on angiosperms, based on the past two decades of research. This phylogeny reveals repeated patterns of radiation throughout the angiosperms and frequent episodes of whole-genome duplication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard 85:531–553

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • APG, III [The Angiosperm Phylogeny Group] (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Armbruster WS, Debevec EM, Willson MF (2002) Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J Evol Biol 15:657–672

    Article  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2005) The age of the angiosperms: a molecular time-scale without a clock. Evolution 59:1245–1258

    PubMed  CAS  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1313

    Article  PubMed  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of Caryophyllales and patterns of floral evolution. Int J Plant Sci 170:627–643

    Article  Google Scholar 

  • Buzgo M, Soltis PS, Kim S, Soltis DE (2005) The making of the flower. Biologist 52:149–154

    Google Scholar 

  • Cantino P, Doyle J, Graham S, Judd W, Olmstead R, Soltis D, Soltis P, Donoghue M (2007) Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56:822–846

    Article  Google Scholar 

  • Chamala S, Walts B, Albert V, dePamphilis C, Der J, Estill J, Leebens-Mack J, Lee S, Ma H, Rounsley S, Schuster S, Soltis D, Soltis P, Tomsho L, Wessler S, Wing R, Yu Y, Barbazuk B (2011) The Amborella genome project: generating a reference sequence for angiosperm evolutionary analysis. PAG abstract

    Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L et al (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580

    Article  Google Scholar 

  • Chase MW, Fay MF, Devey D, Maurin O, Rønsted N, Davies J, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS (2006) Multigene analyses of monocot relationships: a summary. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution (excluding Poales), vol 22. Aliso, pp 63–75

    Google Scholar 

  • Cui L, Wall PK, Leebens-Mack J, Lindsay BG, Soltis D, Doyle JJ, Soltis P, Carlson J, Arumuganathan A, Barakat A, Albert V, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Article  Google Scholar 

  • Darwin C (1903) Letter to J. D. Hooker. In: Darwin F, Seward AC (eds) More letters of Charles Darwin, vol 2. John Murray, London

    Google Scholar 

  • Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci USA 101:1904–1909

    Article  PubMed  CAS  Google Scholar 

  • Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  PubMed  Google Scholar 

  • Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA 105(suppl 1):11549–11555

    Article  PubMed  CAS  Google Scholar 

  • Driskell AC, Ané C, Burleigh JG, McMahon MM, O’Meara BC, Sanderson MJ (2004) Phylogenetic utility of large sequence databases for building the tree of life. Science 306:1172–1174

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Edwards EJ, Stills CJ, Donoghue MJ (2007) The relevance of phylogeny to the studies of global change. Trends Ecol Evol 22:243–249

    Article  PubMed  Google Scholar 

  • Ehrendorfer F, Krendl F, Habeler E, Sauer W (1968) Chromosome numbers and evolution in primitive angiosperms. Taxon 17:337–468

    Article  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the cretaceous-tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Goloboff PA (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  Google Scholar 

  • Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Kallersjo M, Farris JS (2009) Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics 25:211–230

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  PubMed  CAS  Google Scholar 

  • Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evens R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776

    Article  PubMed  CAS  Google Scholar 

  • Howarth DG, Donoghue MJ (2006) Phylogenetic analyses of the “ECE” (CYC/TB1) clade reveal duplications that predate the core eudicots. Proc Natl Acad Sci USA 103:9101–9106

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback J (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal J, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 chloroplast genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  PubMed  CAS  Google Scholar 

  • Jarvis C (2007) Order out of chaos: Linnaean plant names and their types. Linnean Society of London and the Natural History Museum, London

    Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  PubMed  CAS  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics—a phylogenetic approach, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Kallersjo M, Albert V, Farris J (1999) Homoplasy increases phylogenetic structure. Cladistics 15:91–93

    Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early diversification of land plants. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kim S, Soltis DE, Albert V, Yoo MJ, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91:2102–2118

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Koh J, Yoo M-J, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744

    Article  PubMed  CAS  Google Scholar 

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82:85–94

    Article  CAS  Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322

    Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    PubMed  CAS  Google Scholar 

  • Magallon S (2010) Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst Biol 59:384–389

    Article  PubMed  Google Scholar 

  • Mathews S, Donoghue M (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genomic-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    Article  PubMed  Google Scholar 

  • Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628

    Article  PubMed  CAS  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schneider H, Zimmer EA, Banks J (2002) Deciding among green plants for whole genome studies. Trends Plant Sci 7:550–554

    Article  PubMed  CAS  Google Scholar 

  • Pryer KM, Schuettpelz ME, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    Article  PubMed  CAS  Google Scholar 

  • Raven PH (1975) The bases of angiosperm phylogeny: cytology. Ann Mo Bot Gard 62:724–764

    Article  Google Scholar 

  • Sanderson MJ, Purvis A, Henze C (1998) Phylogenetic supertrees: assembling the trees of life. Trends Ecol Evol 13:105–109

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ, Thorne JL, Wikstrom N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  PubMed  CAS  Google Scholar 

  • Slingsby JA, Verboom GA (2006) Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am Nat 168:14–27

    Article  PubMed  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9:37

    Article  PubMed  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    Article  PubMed  CAS  Google Scholar 

  • Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ (2011) Understanding angiosperm diversification using small and large phylogenetic trees. Am J Bot 98:404–414

    Article  PubMed  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort M, Albach D, Zanis M, Savolainen V, Hahn W, Hoot S, Fay M, Axtell M, Swensen S, Nixon K, Farris J (2000) Angiosperm phylogeny inferred from a combined data set of 18 S rDNA, rbcL and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603

    Google Scholar 

  • Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of the angiosperms. Sinauer, Sunderland

    Google Scholar 

  • Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M (2006) Expression of floral regulators in basal angiosperms and the origin and evolution of the ABC model. Adv Bot Res 44:483–506

    Article  CAS  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann NY Acad Sci 1133:3–25

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson A, Zheng C, Sankoff D, Wall PK, Soltis PS (2009a) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE (2009b) Floral variation and floral genetics in basal angiosperms. Am J Bot 96:110–128

    Article  PubMed  Google Scholar 

  • Soltis PS, Burleigh JG, Chanderbali AS, Yoo M-J, Soltis DE (2010) Gene and genome duplication in plants. In: Dittmar K, Liberles DA (eds) Evolution after genome duplication. Wiley-VCH, Weinheim, pp 369–398

    Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730

    Article  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover AP, Rougemont J (2008) A fast bootstrapping algorithm for the RAxML web-servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, London

    Google Scholar 

  • Stevens PF (2001 onward) Angiosperm phylogeny website. http://www.mobot.org/MOBOT/research/APweb/

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Tank DC, Donoghue MJ (2010) Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. Syst Bot 35:425–441

    Article  Google Scholar 

  • Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PLoS One 7:e29696. doi:10.1371/journal.pone.0029696

    Article  PubMed  CAS  Google Scholar 

  • Uhl C (1978) Chromosomes of Mexican Sedum II. Section Pachysedum. Rhodora 80:491–512

    Google Scholar 

  • Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006) Pollination decays in biodiversity hotspots. Proc Natl Acad Sci USA 103:956–961

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid diversification and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858

    Article  PubMed  CAS  Google Scholar 

  • Webb CO, Cannon CH, Davies SJ (2008) Ecological organization, biogeography, and the phylogenetic structure of tropical forest tree communities. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Wiley-Blackwell, Oxford, pp 79–97

    Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Roy Soc Lond B Bio 268:2211–2220

    Article  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    Article  PubMed  CAS  Google Scholar 

  • Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570

    Article  PubMed  Google Scholar 

  • Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  PubMed  CAS  Google Scholar 

  • Zwickl DJ (2006) GARLI. Genetic algorithm for rapid likelihood inference. Software available at http://www.bio.utexas.edu/grad/zwickl/web/garli.html

Download references

Acknowledgments

This work was supported in part by the US National Science Foundation (grants EF-0431266 and PGR-0638595) and the NSF-funded iPlant Collaborative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela S. Soltis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Soltis, P.S., Soltis, D.E. (2013). Angiosperm Phylogeny: A Framework for Studies of Genome Evolution. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_1

Download citation

Publish with us

Policies and ethics