Skip to main content

Regulation of the Actin Cytoskeleton in Dendritic Spines

  • Chapter
  • First Online:
Book cover Synaptic Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

Spine morphogenesis is largely dependent on the remodeling of the actin cytoskeleton. Actin dynamics within spines is regulated by a complex network of signaling molecules, which relay signals from synaptic receptors, through small GTPases and their regulators, to actin-binding proteins. In this chapter, we will discuss molecules involved in dendritic spine plasticity beginning with actin and moving upstream toward neuromodulators and trophic factors that initiate signaling involved in these plasticity events. We will place special emphasis on small GTPase pathways, as they have an established importance in dendritic spine plasticity and pathology. Finally, we will discuss some epigenetic mechanisms that control spine morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, M., & Matus, A. (2003). Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nature Neuroscience, 6, 1194–1200.

    Article  PubMed  CAS  Google Scholar 

  • Allen, P. B., Ouimet, C. C., & Greengard, P. (1997). Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 94, 9956–9961.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, V. A., & Sabatini, B. L. (2007). Anatomical and physiological plasticity of dendritic spines. Annual Review of Neuroscience, 30, 79–97.

    Article  PubMed  CAS  Google Scholar 

  • Bacchelli, E., Blasi, F., Biondolillo, M., Lamb, J. A., Bonora, E., Barnby, G., Parr, J., Beyer, K. S., Klauck, S. M., Poustka, A., Bailey, A. J., Monaco, A. P., & Maestrini, E. (2003). Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Molecular Psychiatry, 8, 916–924.

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros-Yanez, I., Benavides-Piccione, R., Bourgeois, J. P., Changeux, J. P., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 11567–11572.

    Article  PubMed  CAS  Google Scholar 

  • Barros, C. S., Calabrese, B., Chamero, P., Roberts, A. J., Korzus, E., Lloyd, K., Stowers, L., Mayford, M., Halpain, S., & Muller, U. (2009). Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 106, 4507–4512.

    Article  PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., & Yuste, R. (2002). Spine motility. Phenomenology, mechanisms, and function. Neuron, 35, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum, R. J., Connolly, B. A., & Feig, L. A. (2003). Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. Journal of Biological Chemistry, 278, 18833–18841.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, M. E., Xie, Z., Day, M., Photowala, H., Barbolina, M. V., Miller, C. A., Weiss, C., Radulovic, J., Sweatt, J. D., Disterhoft, J. F., Surmeier, D. J., & Penzes, P. (2009). Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 106, 13058–13063.

    Article  PubMed  CAS  Google Scholar 

  • Carlier, M. F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G. X., Hong, Y., Chua, N. H., & Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: Implication in actin-based motility. The Journal of Cell Biology, 136, 1307–1322.

    Article  PubMed  CAS  Google Scholar 

  • Carlisle, H. J., Manzerra, P., Marcora, E., & Kennedy, M. B. (2008). SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. Journal of Neuroscience, 28, 13673–13683.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., Kuhl, D., Huganir, R. L., & Worley, P. F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 52, 445–459.

    Article  PubMed  CAS  Google Scholar 

  • Cingolani, L. A., & Goda, Y. (2008). Actin in action: The interplay between the actin cytoskeleton and synaptic efficacy. Nature Reviews Neuroscience, 9, 344–356.

    Article  PubMed  CAS  Google Scholar 

  • Cubelos, B., Sebastian-Serrano, A., Beccari, L., Calcagnotto, M. E., Cisneros, E., Kim, S., Dopazo, A., Alvarez-Dolado, M., Redondo, J. M., Bovolenta, P., Walsh, C. A., & Nieto, M. (2010). Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron, 66, 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., Tada, T., Dolan, B. M., Sharp, P. A., & Sheng, M. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Flavell, S. W., Cowan, C. W., Kim, T. K., Greer, P. L., Lin, Y., Paradis, S., Griffith, E. C., Hu, L. S., Chen, C., & Greenberg, M. E. (2006). Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science, 311, 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Goley, E. D., & Welch, M. D. (2006). The ARP2/3 complex: An actin nucleator comes of age. Nature Reviews: Molecular Cell Biology, 7, 713–726.

    Article  PubMed  CAS  Google Scholar 

  • Govek, E. E., Newey, S. E., Akerman, C. J., Cross, J. R., Van der Veken, L., & Van Aelst, L. (2004). The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nature Neuroscience, 7, 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, S. D., Futter, M., Snyder, G. L., Allen, P. B., Nairn, A. C., Greengard, P., & Hsieh-Wilson, L. C. (2004). Spinophilin is phosphorylated by Ca2+/calmodulin-dependent protein kinase II resulting in regulation of its binding to F-actin. Journal of Neurochemistry, 90, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Grove, M., Demyanenko, G., Echarri, A., Zipfel, P. A., Quiroz, M. E., Rodriguiz, R. M., Playford, M., Martensen, S. A., Robinson, M. R., Wetsel, W. C., Maness, P. F., & Pendergast, A. M. (2004). ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Molecular and Cellular Biology, 24, 10905–10922.

    Article  PubMed  CAS  Google Scholar 

  • Grutzendler, J., Kasthuri, N., & Gan, W. B. (2002). Long-term dendritic spine stability in the adult cortex. Nature, 420, 812–816.

    Article  PubMed  CAS  Google Scholar 

  • Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R., & Tsai, L. H. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Haeckel, A., Ahuja, R., Gundelfinger, E. D., Qualmann, B., & Kessels, M. M. (2008). The actin-binding protein Abp1 controls dendritic spine morphology and is important for spine head and synapse formation. Journal of Neuroscience, 28, 10031–10044.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., & Shirao, T. (1999). Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons. Journal of Neuroscience, 19, 3918–3925.

    PubMed  CAS  Google Scholar 

  • Hayashi, K., Ishikawa, R., Ye, L. H., He, X. L., Takata, K., Kohama, K., & Shirao, T. (1996). Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex. Journal of Neuroscience, 16, 7161–7170.

    PubMed  CAS  Google Scholar 

  • Hering, H., & Sheng, M. (2003). Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. Journal of Neuroscience, 23, 11759–11769.

    PubMed  CAS  Google Scholar 

  • Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., & Svoboda, K. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Hook, S. S., & Means, A. R. (2001). Ca(2+)/CaM-dependent kinases: From activation to function. Annual Review of Pharmacology and Toxicology, 41, 471–505.

    Article  PubMed  CAS  Google Scholar 

  • Hotulainen, P., Llano, O., Smirnov, S., Tanhuanpaa, K., Faix, J., Rivera, C., & Lappalainen, P. (2009). Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. The Journal of Cell Biology, 185, 323–339.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh-Wilson, L. C., Allen, P. B., Watanabe, T., Nairn, A. C., & Greengard, P. (1999). Characterization of the neuronal targeting protein spinophilin and its interactions with protein phosphatase-1. Biochemistry, 38, 4365–4373.

    Article  PubMed  CAS  Google Scholar 

  • Impey, S., Davare, M., Lasiek, A., Fortin, D., Ando, H., Varlamova, O., Obrietan, K., Soderling, T. R., Goodman, R. H., & Wayman, G. A. (2010). An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Molecular and Cellular Neuroscience, 43, 146–156.

    Article  PubMed  CAS  Google Scholar 

  • Irie, F., & Yamaguchi, Y. (2002). EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nature Neuroscience, 5, 1117–1118.

    Article  PubMed  CAS  Google Scholar 

  • Jaaro-Peled, H., Hayashi-Takagi, A., Seshadri, S., Kamiya, A., Brandon, N. J., & Sawa, A. (2009). Neurodevelopmental mechanisms of schizophrenia: Understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends in Neurosciences, 32, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Jones, K. A., Srivastava, D. P., Allen, J. A., Strachan, R. T., Roth, B. L., & Penzes, P. (2009). Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proceedings of the National Academy of Sciences of the United States of America, 106, 19575–19580.

    Article  PubMed  CAS  Google Scholar 

  • Kang, M. G., Guo, Y., & Huganir, R. L. (2009). AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. Proceedings of the National Academy of Sciences of the United States of America, 106, 3549–3554.

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht, R., Farb, C. R., Rodrigues, S. M., & LeDoux, J. E. (2006). Fear conditioning drives profilin into amygdala dendritic spines. Nature Neuroscience, 9, 481–483.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., Woo, R. S., Mei, L., & Malinow, R. (2007). The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron, 54, 583–597.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Christian, K., & Lu, B. (2008). BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiology of Learning and Memory, 89, 312–323.

    Article  PubMed  CAS  Google Scholar 

  • Luikart, B. W., & Parada, L. F. (2006). Receptor tyrosine kinase B-mediated excitatory synaptogenesis. Progress in Brain Research, 157, 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Luikart, B. W., Nef, S., Virmani, T., Lush, M. E., Liu, Y., Kavalali, E. T., & Parada, L. F. (2005). TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses. Journal of Neuroscience, 25, 3774–3786.

    Article  PubMed  CAS  Google Scholar 

  • Luo, L., Hensch, T. K., Ackerman, L., Barbel, S., Jan, L. Y., & Jan, Y. N. (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379, 837–840.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X. M., Huang, J. P., Kim, E. J., Zhu, Q., Kuchel, G. A., Mains, R. E., & Eipper, B. A. (2010). Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons. Hippocampus, 21, 661–677.

    Google Scholar 

  • Maze, I., Covington, H. E., 3rd, Dietz, D. M., LaPlant, Q., Renthal, W., Russo, S. J., Mechanic, M., Mouzon, E., Neve, R. L., Haggarty, S. J., Ren, Y., Sampath, S. C., Hurd, Y. L., Greengard, P., Tarakhovsky, A., Schaefer, A., & Nestler, E. J. (2010). Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science, 327, 213–216.

    Article  PubMed  CAS  Google Scholar 

  • McAvoy, T., Zhou, M. M., Greengard, P., & Nairn, A. C. (2009). Phosphorylation of Rap1GAP, a striatally enriched protein, by protein kinase A controls Rap1 activity and dendritic spine morphology. Proceedings of the National Academy of Sciences of the United States of America, 106, 3531–3536.

    Article  PubMed  CAS  Google Scholar 

  • Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, L., Jackson, M., Lu, W. Y., MacDonald, J. F., Wang, J. Y., Falls, D. L., & Jia, Z. (2002). Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron, 35, 121–133.

    Article  PubMed  CAS  Google Scholar 

  • Meng, Y., Zhang, Y., Tregoubov, V., Falls, D. L., & Jia, Z. (2003). Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton. Reviews in the Neurosciences, 14, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, Y., Yamauchi, J., Tanoue, A., Wu, C., & Mobley, W. C. (2006). TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proceedings of the National Academy of Sciences of the United States of America, 103, 10444–10449.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, A. Y., Harms, M. B., & Luo, L. (2000). Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. Journal of Neuroscience, 20, 5329–5338.

    PubMed  CAS  Google Scholar 

  • Nakazawa, T., Kuriu, T., Tezuka, T., Umemori, H., Okabe, S., & Yamamoto, T. (2008). Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTPase-activating protein, p250GAP. Journal of Neurochemistry, 105, 1384–1393.

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff, H., Sassoe-Pognetto, M., Panzanelli, P., Maas, C., Witke, W., & Kneussel, M. (2005). The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner. European Journal of Neuroscience, 21, 15–25.

    Article  PubMed  Google Scholar 

  • Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E., & Sheng, M. (2001). Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron, 31, 289–303.

    Article  PubMed  CAS  Google Scholar 

  • Penzes, P., Beeser, A., Chernoff, J., Schiller, M. R., Eipper, B. A., Mains, R. E., & Huganir, R. L. (2003). Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron, 37, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Penzes, P., Cahill, M. E., Jones, K. A., & Srivastava, D. P. (2008). Convergent CaMK and RacGEF signals control dendritic structure and function. Trends in Cell Biology, 18, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, B. E., Zang, T., Wilkerson, J. R., Taniguchi, M., Maksimova, M. A., Smith, L. N., Cowan, C. W., & Huber, K. M. (2010). Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron, 66, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Racz, B., & Weinberg, R. J. (2008). Organization of the Arp2/3 complex in hippocampal spines. Journal of Neuroscience, 28, 5654–5659.

    Article  PubMed  CAS  Google Scholar 

  • Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews: Molecular Cell Biology, 6, 167–180.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, A. M., Flamini, M. I., Fu, X. D., Mannella, P., Giretti, M. S., Goglia, L., Genazzani, A. R., & Simoncini, T. (2009). Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton. Molecular Endocrinology, 23, 1193–1202.

    Article  PubMed  CAS  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, V., & Dotti, C. G. (2007). Transmitting on actin: Synaptic control of dendritic architecture. Journal of Cell Science, 120, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Sherren, N., & Pappas, B. A. (2005). Selective acetylcholine and dopamine lesions in neonatal rats produce distinct patterns of cortical dendritic atrophy in adulthood. Neuroscience, 136, 445–456.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen, M., Khudayberdiev, S., Leuschner, P. F., Busch, C. J., Kane, C., Hubel, K., Dekker, F., Hedberg, C., Rengarajan, B., Drepper, C., Waldmann, H., Kauppinen, S., Greenberg, M. E., Draguhn, A., Rehmsmeier, M., Martinez, J., & Schratt, G. M. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biology, 11, 705–716.

    Article  PubMed  CAS  Google Scholar 

  • Smrt, R. D., Szulwach, K. E., Pfeiffer, R. L., Li, X., Guo, W., Pathania, M., Teng, Z. Q., Luo, Y., Peng, J., Bordey, A., Jin, P., & Zhao, X. (2010). MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells, 28, 1060–1070.

    Article  PubMed  CAS  Google Scholar 

  • Sobczyk, A., & Svoboda, K. (2007). Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron, 53, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, T. R. (2000). CaM-kinases: Modulators of synaptic plasticity. Current Opinion in Neurobiology, 10, 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, S. H., Guire, E. S., Kaech, S., White, J., Zhang, F., Schutz, K., Langeberg, L. K., Banker, G., Raber, J., & Scott, J. D. (2007). A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. Journal of Neuroscience, 27, 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Solis, O., Limon, D. I., Flores-Hernandez, J., & Flores, G. (2007). Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson’s disease. Synapse, 61, 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D. P., Woolfrey, K. M., Jones, K. A., Shum, C. Y., Lash, L. L., Swanson, G. T., & Penzes, P. (2008). Rapid enhancement of two-step wiring plasticity by estrogen and NMDA receptor activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 14650–14655.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, D. P., Woolfrey, K. M., Liu, F., Brandon, N. J., & Penzes, P. (2010). Estrogen receptor ss activity modulates synaptic signaling and structure. Journal of Neuroscience, 30, 13454–13460.

    Article  PubMed  CAS  Google Scholar 

  • Star, E. N., Kwiatkowski, D. J., & Murthy, V. N. (2002). Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neuroscience, 5, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Sekino, Y., Tanaka, S., Mizui, T., Kishi, S., & Shirao, T. (2003). Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. Journal of Neuroscience, 23, 6586–6595.

    PubMed  CAS  Google Scholar 

  • Tashiro, A., Minden, A., & Yuste, R. (2000). Regulation of dendritic spine morphology by the rho family of small GTPases: Antagonistic roles of Rac and Rho. Cerebral Cortex, 10, 927–938.

    Article  PubMed  CAS  Google Scholar 

  • Tian, X., Kai, L., Hockberger, P. E., Wokosin, D. L., & Surmeier, D. J. (2010). MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Molecular and Cellular Neuroscience, 44, 94–108.

    Article  PubMed  CAS  Google Scholar 

  • Tolias, K. F., Bikoff, J. B., Burette, A., Paradis, S., Harrar, D., Tavazoie, S., Weinberg, R. J., & Greenberg, M. E. (2005). The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron, 45, 525–538.

    Article  PubMed  CAS  Google Scholar 

  • Tolias, K. F., Bikoff, J. B., Kane, C. G., Tolias, C. S., Hu, L., & Greenberg, M. E. (2007). The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proceedings of the National Academy of Sciences of the United States of America, 104, 7265–7270.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. D., & Deutch, A. Y. (2008). Dopamine depletion of the prefrontal cortex induces dendritic spine loss: Reversal by atypical antipsychotic drug treatment. Neuropsychopharmacology, 33, 1276–1286.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, A. M., Karginov, A. V., Kinley, A. W., Weed, S. A., Li, Y., Parsons, J. T., & Cooper, J. A. (2001). Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Current Biology, 11, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, A. M., Nebhan, C. A., Hu, L., Majumdar, D., Meier, K. M., Weaver, A. M., & Webb, D. J. (2008). N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. Journal of Biological Chemistry, 283, 15912–15920.

    Article  PubMed  CAS  Google Scholar 

  • Witke, W., Sutherland, J. D., Sharpe, A., Arai, M., & Kwiatkowski, D. J. (2001). Profilin I is essential for cell survival and cell division in early mouse development. Proceedings of the National Academy of Sciences of the United States of America, 98, 3832–3836.

    Article  PubMed  CAS  Google Scholar 

  • Woolfrey, K. M., Srivastava, D. P., Photowala, H., Yamashita, M., Barbolina, M. V., Cahill, M. E., Xie, Z., Jones, K. A., Quilliam, L. A., Prakriya, M., & Penzes, P. (2009). Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nature Neuroscience, 12, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., Srivastava, D. P., Photowala, H., Kai, L., Cahill, M. E., Woolfrey, K. M., Shum, C. Y., Surmeier, D. J., & Penzes, P. (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56, 640–656.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, M., Matsui, M., & Watanabe, M. (2010). Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission. Journal of Neuroscience, 30, 4408–4418.

    Article  PubMed  CAS  Google Scholar 

  • Yang, G., Pan, F., & Gan, W. B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462, 920–924.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B., Zhang, Y., & Shacter, E. (2003). Caspase 3-mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Molecular and Cellular Biology, 23, 5716–5725.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Webb, D. J., Asmussen, H., Niu, S., & Horwitz, A. F. (2005). A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. Journal of Neuroscience, 25, 3379–3388.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. J., Qin, Y., Zhao, M., Van Aelst, L., & Malinow, R. (2002). Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell, 110, 443–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Penzes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Penzes, P., Rafalovich, I. (2012). Regulation of the Actin Cytoskeleton in Dendritic Spines. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_4

Download citation

Publish with us

Policies and ethics