Skip to main content

Proteases in Cancer: Significance for Invasion and Metastasis

  • Chapter
  • First Online:
Proteases: Structure and Function

Abstract

There is an extensive body of literature documenting the association of proteases with cancer. Indeed, a search of PubMed for the phrase “proteases in cancer” brings up a list of ~73,000 papers, including >7,200 reviews. Nonetheless, the protease community still has not identified and validated all of the proteases and proteolytic pathways that play causal roles in neoplastic progression, nor determined which proteases would be appropriate therapeutic targets in pre-malignant lesions as compared to end-stage cancers or in any one type of cancer. Furthermore, more than one catalytic type of protease has been implicated in the progression of human tumors, as have interactions among proteases of more than one catalytic type. How vast a repertoire of proteases has been implicated in cancer is evident from a recent comprehensive tome on the many proteases that comprise the cancer degradome (Edwards et al. 2008b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, Vlodavsky I (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176

    CAS  PubMed  Google Scholar 

  • Acuff HB, Sinnamon M, Fingleton B, Boone B, Levy SE, Chen X, Pozzi A, Carbone DP, Schwartz DR, Moin K, Sloane BF, Matrisian LM (2006) Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 66:7968–7975

    CAS  PubMed  Google Scholar 

  • Adams J (2004a) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421

    CAS  PubMed  Google Scholar 

  • Adams J (2004b) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    CAS  PubMed  Google Scholar 

  • Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin LM (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13:193–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akers WJ, Xu B, Lee H, Sudlow GP, Fields GB, Achilefu S, Edwards WB (2012) Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug Chem 23:656–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alencar H, Funovics MA, Figueiredo J, Sawaya H, Weissleder R, Mahmood U (2007) Colonic adenocarcinomas: near-infrared microcatheter imaging of smart probes for early detection–study in mice. Radiology 244:232–238

    PubMed  Google Scholar 

  • Almholt K, Johnsen M (2003) Stromal cell involvement in cancer. In: Molecular staging of cancer, vol 162. Springer, Berlin, pp 31–42

    Google Scholar 

  • Almholt K, Nielsen BS, Frandsen TL, Brunner N, Dano K, Johnsen M (2003) Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene 22:4389–4397

    CAS  PubMed  Google Scholar 

  • Almholt K, Green KA, Juncker-Jensen A, Nielsen BS, Lund LR, Romer J (2007) Extracellular proteolysis in transgenic mouse models of breast cancer. J Mammary Gland Biol Neoplasia 12:83–97

    PubMed Central  PubMed  Google Scholar 

  • Amit S, Ben-Neriah Y (2003) NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach. Semin Cancer Biol 13:15–28

    CAS  PubMed  Google Scholar 

  • An B, Goldfarb RH, Siman R, Dou QP (1998) Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 5:1062–1075

    CAS  PubMed  Google Scholar 

  • Antalis TM, Bugge TH, Wu Q (2011) Membrane-anchored serine proteases in health and disease. Prog Mol Biol Transl Sci 99:1–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497

    CAS  PubMed  Google Scholar 

  • Ardi VC, Van den Steen PE, Opdenakker G, Schweighofer B, Deryugina EI, Quigley JP (2009) Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. J Biol Chem 284:25854–25866

    CAS  PubMed  Google Scholar 

  • auf dem Keller U, Schilling O (2010) Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 92:1705–1714

    Google Scholar 

  • Bahram F, von der Lehr N, Cetinkaya C, Larsson LG (2000) c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95:2104–2110

    CAS  PubMed  Google Scholar 

  • Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257

    CAS  PubMed  Google Scholar 

  • Barwick BG, Abramovitz M, Kodani M, Moreno CS, Nam R, Tang W, Bouzyk M, Seth A, Leyland-Jones B (2010) Prostate cancer genes associated with TMPRSS2-ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br J Cancer 102:570–576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bastus NC, Boyd LK, Mao X, Stankiewicz E, Kudahetti SC, Oliver RTD, Berney DM, Lu Y-J (2010) Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res 70:9544–9548

    PubMed Central  PubMed  Google Scholar 

  • Bell-McGuinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA (2007) Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res 67:7378–7385

    CAS  PubMed  Google Scholar 

  • Benavides F, Perez C, Blando J, Contreras O, Shen J, Coussens LM, Fischer SM, Kusewitt DF, Digiovanni J, Conti CJ (2012) Protective role of cathepsin L in mouse skin carcinogenesis. Mol Carcinog. 51:352–361

    Google Scholar 

  • Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12:715–723

    CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergum C, List K (2010) Loss of the Matriptase Inhibitor HAI-2 During Prostate Cancer Progression. Prostate 70:1422–1428

    CAS  PubMed  Google Scholar 

  • Bernhardt A, Kuester D, Roessner A, Reinheckel T, Krueger S (2010) Cathepsin X-deficient gastric epithelial cells in co-culture with macrophages: characterization of cytokine response and migration capability after Helicobacter pylori infection. J Biol Chem 285:33691–33700

    CAS  PubMed  Google Scholar 

  • Blavier L, Lazaryev A, Dorey F, Shackleford GM, DeClerck YA (2006) Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Res 66:2691–2699

    CAS  PubMed  Google Scholar 

  • Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    CAS  PubMed  Google Scholar 

  • Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3:668–677

    CAS  PubMed  Google Scholar 

  • Blum G, Weimer RM, Edgington LE, Adams W, Bogyo M (2009) Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS One 4:e6374

    PubMed Central  PubMed  Google Scholar 

  • Borgono CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 4:876–890

    CAS  PubMed  Google Scholar 

  • Borgono CA, Michael IP, Diamandis EP (2004) Human tissue kallikreins: physiologic roles and applications in cancer. Mol Cancer Res 2:257–280

    CAS  PubMed  Google Scholar 

  • Bozkulak EC, Weinmaster G (2009) Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 29:5679–5695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brasse D, Mathelin C, Leroux K, Chenard MP, Blaise S, Stoll I, Tomasetto C, Rio MC (2010) Matrix metalloproteinase 11/stromelysin-3 exerts both activator and repressor functions during the hematogenous metastatic process in mice. Int J Cancer 127:1347–1355

    CAS  PubMed  Google Scholar 

  • Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214

    CAS  PubMed  Google Scholar 

  • Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92:391–400

    CAS  PubMed  Google Scholar 

  • Bruns AF, Herbert SP, Odell AF, Jopling HM, Hooper NM, Zachary IC, Walker JH, Ponnambalam S (2010) Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:161–174

    CAS  PubMed  Google Scholar 

  • Bugge TH, Lund LR, Kombrinck KK, Nielsen BS, Holmback K, Drew AF, Flick MJ, Witte DP, Dano K, Degen JL (1998) Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16:3097–3104

    CAS  PubMed  Google Scholar 

  • Bugge TH, List K, Szabo R (2007) Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci 12:5060–5070

    CAS  PubMed  Google Scholar 

  • Bugge TH, Antalis TM, Wu Q (2009) Type II transmembrane serine proteases. J Biol Chem 284:23177–23181

    CAS  PubMed  Google Scholar 

  • Burden RE, Gormley JA, Jaquin TJ, Small DM, Quinn DJ, Hegarty SM, Ward C, Walker B, Johnston JA, Olwill SA, Scott CJ (2009) Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis. Clin Cancer Res 15:6042–6051

    CAS  PubMed  Google Scholar 

  • Burden RE, Gormley JA, Kuehn D, Ward C, Kwok HF, Gazdoiu M, McClurg A, Jaquin TJ, Johnston JA, Scott CJ, Olwill SA (2012) Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie 94:487–493

    CAS  PubMed  Google Scholar 

  • Casal C, Torres-Collado AX, Plaza-Calonge Mdel C, Martino-Echarri E, Ramon YCS, Rojo F, Griffioen AW, Rodriguez-Manzaneque JC (2010) ADAMTS1 contributes to the acquisition of an endothelial-like phenotype in plastic tumor cells. Cancer Res 70:4676–4686

    CAS  PubMed  Google Scholar 

  • Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    CAS  PubMed  Google Scholar 

  • Cecarini V, Cuccioloni M, Mozzicafreddo M, Bonfili L, Angeletti M, Eleuteri AM (2011) Targeting proteasomes with natural occurring compounds in cancer treatment. Curr Cancer Drug Targets 11:307–324

    CAS  PubMed  Google Scholar 

  • Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686

    CAS  PubMed  Google Scholar 

  • Chau I, Rigg A, Cunningham D (2003) Matrix metalloproteinase inhibitors–an emphasis on gastrointestinal malignancies. Crit Rev Oncol Hematol 45:151–176

    PubMed  Google Scholar 

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao TH, Neuteboom ST, Richardson P, Palladino MA, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    CAS  PubMed  Google Scholar 

  • Chen LM, Skinner ML, Kauffman SW, Chao J, Chao L, Thaler CD, Chai KX (2001) Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 276:21434–21442

    CAS  PubMed  Google Scholar 

  • Chen LM, Zhang XC, Chai KX (2004) Regulation of prostasin expression and function in the prostate. Prostate 59:1–12

    CAS  PubMed  Google Scholar 

  • Chen X, Su Y, Fingleton B, Acuff H, Matrisian LM, Zent R, Pozzi A (2005) Increased plasma MMP9 in integrin alpha1-null mice enhances lung metastasis of colon carcinoma cells. Int J Cancer 116:52–61

    CAS  PubMed  Google Scholar 

  • Chen M, Chen LM, Lin CY, Chai KX (2008) The epidermal growth factor receptor (EGFR) is proteolytically modified by the Matriptase-Prostasin serine protease cascade in cultured epithelial cells. Biochim Biophys Acta Mol Cell Res 1783:896–903

    CAS  Google Scholar 

  • Chen LM, Hatfield ML, Fu YY, Chai KX (2009) Prostasin regulates iNOS and cyclin D1 expression by modulating protease-activated receptor-2 signaling in prostate epithelial cells. Prostate 69:1790–1801

    CAS  PubMed  Google Scholar 

  • Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11:239–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng P, Gong J, Wang T, Chen J, Liu GS, Zhang R (2005) Gene expression in rats with Barrett’s esophagus and esophageal adenocarcinoma induced by gastroduodenoesophageal reflux. World J Gastroenterol 11:5117–5122

    CAS  PubMed  Google Scholar 

  • Chou MT, Anthony J, Bjorge JD, Fujita DJ (2010) The von Hippel-Lindau tumor suppressor protein is destabilized by src: implications for tumor angiogenesis and progression. Genes Cancer 1:225–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark JP, Cooper CS (2009) ETS gene fusions in prostate cancer. Nat Rev Urol 6:429–439

    CAS  PubMed  Google Scholar 

  • Colland F (2010) The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans 38:137–143

    CAS  PubMed  Google Scholar 

  • Cordes C, Bartling B, Simm A, Afar D, Lautenschlager C, Hansen G, Silber RE, Burdach S, Hofmann HS (2009) Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer 64:79–85

    PubMed  Google Scholar 

  • Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD (1998) Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161:6845–6852

    CAS  PubMed  Google Scholar 

  • Cortes Sempere M, Rodriguez Fanjul V, Sanchez Perez I, Perona R (2008) The role of the NFkappaB signalling pathway in cancer. Clin Transl Oncol 10:143–147

    PubMed  Google Scholar 

  • Costa FP, Batista Junior EL, Zelmanowicz A, Svedman C, Devenz G, Alves S, Martins da Silva AS, Garicochea B (2009) Prostasin, a potential tumor marker in ovaria cancer – a pilot study. Clinics 64:641–644

    PubMed Central  PubMed  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    CAS  PubMed  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    CAS  PubMed  Google Scholar 

  • Cox JH, Dean RA, Roberts CR, Overall CM (2008) Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. J Biol Chem 283:19389–19399

    CAS  PubMed  Google Scholar 

  • Crawford HC, Dempsey PJ, Brown G, Adam L, Moss ML (2009) ADAM10 as a therapeutic target for cancer and inflammation. Curr Pharm Des 15:2288–2299

    CAS  PubMed  Google Scholar 

  • Croucher DR, Saunders DN, Lobov S, Ranson M (2008) Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 8:535–545

    CAS  PubMed  Google Scholar 

  • Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV (2004) Implications of proteasome inhibition: an enhanced macrophage phenotype. Cell Immunol 227:140–147

    CAS  PubMed  Google Scholar 

  • Cutter JL, Cohen NT, Wang J, Sloan AE, Cohen AR, Panneerselvam A, Schluchter M, Blum G, Bogyo M, Basilion JP (2012) Topical application of activity-based probes for visualization of brain tumor tissue. PLoS One 7:e33060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahlmann B (2005) Proteasomes. Essays Biochem 41:31–48

    CAS  PubMed  Google Scholar 

  • D’Armiento J, DiColandrea T, Dalal SS, Okada Y, Huang MT, Conney AH, Chada K (1995) Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol Cell Biol 15:5732–5739

    PubMed Central  PubMed  Google Scholar 

  • Darragh MR, Schneider EL, Lou J, Phojanakong PJ, Farady CJ, Marks JD, Hann BC, Craik CS (2010) Tumor detection by imaging proteolytic activity. Cancer Res 70:1505–1512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34:122–136

    CAS  PubMed  Google Scholar 

  • Demon D, Van Damme P, Vanden Berghe T, Vandekerckhove J, Declercq W, Gevaert K, Vandenabeele P (2009) Caspase substrates: easily caught in deep waters? Trends Biotechnol 27:680–688

    CAS  PubMed  Google Scholar 

  • Denmeade SR, Litvinov I, Sokoll LJ, Lilja H, Isaacs JT (2003) Prostate-specific antigen (PSA) protein does not affect growth of prostate cancer cells InVitro or prostate cancer xenografts in vivo. Prostate 56:45–53

    CAS  PubMed  Google Scholar 

  • Dennemarker J, Lohmuller T, Mayerle J, Tacke M, Lerch MM, Coussens LM, Peters C, Reinheckel T (2010) Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29:1611–1621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diamandis EP (1998) Prostate-specific antigen: its usefulness in clinical medicine. Trends Endocrinol Metab 9:310–316

    CAS  PubMed  Google Scholar 

  • Doucet A, Overall CM (2008) Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol Aspects Med 29:339–358

    CAS  PubMed  Google Scholar 

  • Dragnev KH, Pitha-Rowe I, Ma Y, Petty WJ, Sekula D, Murphy B, Rendi M, Suh N, Desai NB, Sporn MB, Freemantle SJ, Dmitrovsky E (2004) Specific chemopreventive agents trigger proteasomal degradation of G1 cyclins: implications for combination therapy. Clin Cancer Res 10:2570–2577

    CAS  PubMed  Google Scholar 

  • Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci U S A 94:855–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drexler HC, Risau W, Konerding MA (2000) Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 14:65–77

    CAS  PubMed  Google Scholar 

  • Dubail J, Kesteloot F, Deroanne C, Motte P, Lambert V, Rakic JM, Lapiere C, Nusgens B, Colige A (2010) ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity. Cell Mol Life Sci 67:4213–4232

    CAS  PubMed  Google Scholar 

  • Duffy MJ (1990) Plasminogen activators and cancer. Blood Coagul Fibrinol 1:681–687

    CAS  Google Scholar 

  • Duffy MJ (2004) The urokinase plasminogen activator system: Role in malignancy. Curr Pharm Des 10:39–49

    CAS  PubMed  Google Scholar 

  • Duffy MJ, Ogrady P, Devaney D, Osiorain L, Fennelly JJ, Lijnen HJ (1988) Urokinase-plasminogen activator, a marker for aggressive breast carcinomas – a preliminary report. Cancer 62:531–533

    CAS  PubMed  Google Scholar 

  • Easwaran V, Song V, Polakis P, Byers S (1999) The ubiquitin-proteasome pathway and serine kinase activity modulate adenomatous polyposis coli protein-mediated regulation of beta-catenin-lymphocyte enhancer-binding factor signaling. J Biol Chem 274:16641–16645

    CAS  PubMed  Google Scholar 

  • Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG, Lineberry N, Bogyo M (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008a) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    CAS  PubMed  Google Scholar 

  • Edwards DR, Hoyer-Hansen G, Blasi F, Sloane BF (eds) (2008b) The cancer degradome – proteases and cancer biology. Springer, New York

    Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    CAS  PubMed  Google Scholar 

  • Eguchi H, Herschenhous N, Kuzushita N, Moss SF (2003) Helicobacter pylori increases proteasome-mediated degradation of p27(kip1) in gastric epithelial cells. Cancer Res 63:4739–4746

    CAS  PubMed  Google Scholar 

  • El Hour M, Moncada-Pazos A, Blacher S, Masset A, Cal S, Berndt S, Detilleux J, Host L, Obaya AJ, Maillard C, Foidart JM, Ectors F, Noel A, Lopez-Otin C (2010) Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. Oncogene 29:3025–3032

    PubMed  Google Scholar 

  • Elie BT, Gocheva V, Shree T, Dalrymple SA, Holsinger LJ, Joyce JA (2010) Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie 92:1618–1624

    CAS  PubMed  Google Scholar 

  • Ellis V, Scully MF, Kakkar VV (1989) Plasminogen activation initiated by single-chain urokinase-type plasminogen-activator – potentiation by U937 monocytes. J Biol Chem 264:2185–2188

    CAS  PubMed  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Fu D, Shen XZ (2010) The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta 1806:1–6

    CAS  PubMed  Google Scholar 

  • Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A 99:7883–7888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fingleton B (2006) Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11:479–491

    CAS  PubMed  Google Scholar 

  • Flannery T, Gibson D, Mirakhur M, McQuaid S, Greenan C, Trimble A, Walker B, McCormick D, Johnston PG (2003) The clinical significance of cathepsin S expression in human astrocytomas. Am J Pathol 163:175–182

    CAS  PubMed  Google Scholar 

  • Flannery T, McQuaid S, McGoohan C, McConnell RS, McGregor G, Mirakhur M, Hamilton P, Diamond J, Cran G, Walker B, Scott C, Martin L, Ellison D, Patel C, Nicholson C, Mendelow D, McCormick D, Johnston PG (2006) Cathepsin S expression: an independent prognostic factor in glioblastoma tumours–a pilot study. Int J Cancer 119:854–860

    CAS  PubMed  Google Scholar 

  • Fodale V, Pierobon M, Liotta L, Petricoin E (2011) Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J 17:89–95

    CAS  PubMed  Google Scholar 

  • Forbs D, Thiel S, Stella MC, Sturzebecher A, Schweinitz A, Steinmetzer T, Sturzebecher J, Uhland K (2005) In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 27:1061–1070

    PubMed  Google Scholar 

  • Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–7249

    CAS  PubMed  Google Scholar 

  • Frohlich E, Mohrle M, Klessen C (2004) Cathepsins in basal cell carcinomas: activity, immunoreactivity and mRNA staining of cathepsins B, D, H and L. Arch Dermatol Res 295:411–421

    PubMed  Google Scholar 

  • Fry JL, Toker A (2010) Secreted and membrane-bound isoforms of protease ADAM9 have opposing effects on breast cancer cell migration. Cancer Res 70:8187–8198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galkin AV, Mullen L, Fox WD, Brown J, Duncan D, Moreno O, Madison EL, Agus DB (2004) CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 61:228–235

    CAS  PubMed  Google Scholar 

  • Gandolfo GM, Conti L, Vercillo M (1996) Fibrinolysis components as prognostic markers in breast cancer and colorectal carcinoma. Anticancer Res 16:2155–2159

    CAS  PubMed  Google Scholar 

  • Garg P, Sarma D, Jeppsson S, Patel NR, Gewirtz AT, Merlin D, Sitaraman SV (2010) Matrix metalloproteinase-9 functions as a tumor suppressor in colitis-associated cancer. Cancer Res 70:792–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavine PR, Neil JC, Crouch DH (1999) Protein stabilization: a common consequence of mutations in independently derived v-Myc alleles. Oncogene 18:7552–7558

    CAS  PubMed  Google Scholar 

  • Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    CAS  PubMed  Google Scholar 

  • Gibb DR, Saleem SJ, Kang DJ, Subler MA, Conrad DH (2011) ADAM10 overexpression shifts lympho- and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch. J Immunol 186:4244–4252

    CAS  PubMed  Google Scholar 

  • Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    CAS  PubMed  Google Scholar 

  • Gocheva V, Chen X, Peters C, Reinheckel T, Joyce JA (2010) Deletion of cathepsin H perturbs angiogenic switching, vascularization and growth of tumors in a mouse model of pancreatic islet cell cancer. Biol Chem 391:937–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gopinathan A, Denicola GM, Frese KK, Cook N, Karreth FA, Mayerle J, Lerch MM, Reinheckel T, Tuveson DA (2012) Cathepsin B promotes the progression of pancreatic ductal adenocarcinoma in mice. Gut 61(6):877–884

    CAS  PubMed  Google Scholar 

  • Gopinath S, Malia RR, Gondi CS, Alapati K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS (2010) Co-depletion of cathepsin B and uPAR induces G0/G1 arrest in glioma via FOXO3a mediated p27 upregulation. PLoS One 5:e11668

    PubMed Central  PubMed  Google Scholar 

  • Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14:207–219

    CAS  PubMed  Google Scholar 

  • Goulet B, Truscott M, Nepveu A (2006) A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L. Biol Chem 387:1285–1293

    CAS  PubMed  Google Scholar 

  • Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan SS, Nepveu A (2007) Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res 5:899–907

    CAS  PubMed  Google Scholar 

  • Gounaris E, Tung CH, Restaino C, Maehr R, Kohler R, Joyce JA, Ploegh HL, Barrett TA, Weissleder R, Khazaie K (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3:e2916

    PubMed Central  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta R, Nalla AK, Gogineni VR, Chetty C, Bhoopathi P, Klopfenstein JD, Tsung AJ, Mohanam S, Rao JS (2011) uPAR/cathepsin B overexpression reverse angiogenesis by rescuing FAK phosphorylation in uPAR/cathepsin B down regulated meningioma. PLoS One 6:e17123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez-Fernandez A, Inada M, Balbin M, Fueyo A, Pitiot AS, Astudillo A, Hirose K, Hirata M, Shapiro SD, Noel A, Werb Z, Krane SM, Lopez-Otin C, Puente XS (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ha HY, Moon HB, Nam MS, Lee JW, Ryoo ZY, Lee TH, Lee KK, So BJ, Sato H, Seiki M, Yu DY (2001) Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 61:984–990

    CAS  PubMed  Google Scholar 

  • Hagemann S, Gunther T, Dennemarker J, Lohmuller T, Bromme D, Schule R, Peters C, Reinheckel T (2004) The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Eur J Cell Biol 83:775–780

    CAS  PubMed  Google Scholar 

  • Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han B, Nakamura M, Mori I, Nakamura Y, Kakudo K (2005) Urokinase-type plasminogen activator system and breast cancer (Review). Oncol Rep 14:105–112

    CAS  PubMed  Google Scholar 

  • Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harhaj EW, Dixit VM (2011) Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 21:22–39

    CAS  PubMed  Google Scholar 

  • Hecht M, von Metzler I, Sack K, Kaiser M, Sezer O (2008) Interactions of myeloma cells with osteoclasts promote tumour expansion and bone degradation through activation of a complex signalling network and upregulation of cathepsin K, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA). Exp Cell Res 314:1082–1093

    CAS  PubMed  Google Scholar 

  • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    CAS  PubMed  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkila P, Rehn M, Sorsa T, Salo T, Pihlajaniemi T (2005) Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307:292–304

    CAS  PubMed  Google Scholar 

  • Herroon MK, Rajagurubandara E, Rudy D, Chalasani A, Hardaway AL, Podgorski I (2013) Macrophage cathepsin K promotes tumor progression in bone. Oncogene 32(12):1580–1593

    CAS  PubMed  Google Scholar 

  • Herter S, Piper DE, Aaron W, Gabriele T, Cutler G, Cao P, Bhattt AS, Choe Y, Craik CS, Walker N, Meininger D, Hoey T, Austin RJ (2005) Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J 390:125–136

    CAS  PubMed  Google Scholar 

  • Hewitt R, Dano K (1996) Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 49:163–173

    CAS  PubMed  Google Scholar 

  • Hooper JD, Nicol DL, Dickinson JL, Eyre HJ, Scarman AL, Normyle JF, Stuttgen MA, Douglas ML, Loveland KAL, Sutherland GR, Antalis TM (1999) Testisin, a new human serine proteinase expressed by premeiotic testicular germ cells and lost in testicular germ cell tumors. Cancer Res 59:3199–3205

    CAS  PubMed  Google Scholar 

  • Hooper JD, Bowen N, Marshall H, Cullen LM, Sood R, Daniels R, Stuttgen MA, Normyle JF, Higgs DR, Kastner DL, Ogbourne SM, Pera MF, Jazwinska EC, Antalis TM (2000) Localization, expression and genomic structure of the gene encoding the human serine protease testisin. Biochim Biophys Acta Gene Struct Expr 1492:63–71

    CAS  Google Scholar 

  • Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC, Cornelius LA, Shapiro SD (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155

    CAS  PubMed  Google Scholar 

  • Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117:225–237

    CAS  PubMed  Google Scholar 

  • Huang Y, Song N, Ding Y, Yuan S, Li X, Cai H, Shi H, Luo Y (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69:7529–7537

    CAS  PubMed  Google Scholar 

  • Hughes SJ, Glover TW, Zhu XX, Kuick R, Thoraval D, Orringer MB, Beer DG, Hanash S (1998) A novel amplicon at 8p22-23 results in overexpression of cathepsin B in esophageal adenocarcinoma. Proc Natl Acad Sci U S A 95:12410–12415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter SB, Moreno CS (2002) Expression microarray analysis of brain tumors: what have we learned so far. Front Biosci 7:c74–c82

    CAS  PubMed  Google Scholar 

  • Husmann K, Muff R, Bolander ME, Sarkar G, Born W, Fuchs B (2008) Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 47:66–73

    CAS  PubMed  Google Scholar 

  • Hymowitz SG, Wertz IE (2010) A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 10:332–341

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Carpizo D, Luque A (2003) ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Ann NY Acad Sci 995:183–190

    CAS  PubMed  Google Scholar 

  • Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    CAS  PubMed  Google Scholar 

  • Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181

    CAS  PubMed  Google Scholar 

  • Jedeszko C, Sloane BF (2004) Cysteine cathepsins in human cancer. Biol Chem 385:1017–1027

    CAS  PubMed  Google Scholar 

  • Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19:1893–1907

    PubMed  Google Scholar 

  • Jensen AB, Wynne C, Ramirez G, He W, Song Y, Berd Y, Wang H, Mehta A, Lombardi A (2010) The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial. Clin Breast Cancer 10:452–458

    CAS  PubMed  Google Scholar 

  • Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, Coussens LM, Declerck YA (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65:3200–3208

    CAS  PubMed  Google Scholar 

  • Johnsen M, Lund LR, Romer J, Almholt K, Dano K (1998) Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10:667–671

    CAS  PubMed  Google Scholar 

  • Kaakinen R, Lindstedt KA, Sneck M, Kovanen PT, Oorni K (2007) Angiotensin II increases expression and secretion of cathepsin F in cultured human monocyte-derived macrophages: an angiotensin II type 2 receptor-mediated effect. Atherosclerosis 192:323–327

    CAS  PubMed  Google Scholar 

  • Kane SE, Gottesman MM (1990) The role of cathepsin L in malignant transformation. Semin Cancer Biol 1:127–136

    CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katakowski M, Jiang F, Zheng X, Gutierrez JA, Szalad A, Chopp M (2009) Tumorigenicity of cortical astrocyte cell line induced by the protease ADAM17. Cancer Sci 100:1597–1604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenny PA (2007) Tackling EGFR signaling with TACE antagonists: a rational target for metalloprotease inhibitors in cancer. Expert Opin Ther Targets 11:1287–1298

    CAS  PubMed  Google Scholar 

  • Kenny PA, Bissell MJ (2007) Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 117:337–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi K (2010) Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev 39:2048–2053

    CAS  PubMed  Google Scholar 

  • Kitamura T, Kometani K, Hashida H, Matsunaga A, Miyoshi H, Hosogi H, Aoki M, Oshima M, Hattori M, Takabayashi A, Minato N, Taketo MM (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39:467–475

    CAS  PubMed  Google Scholar 

  • Kleer CG, Bloushtain-Qimron N, Chen YH, Carrasco D, Hu M, Yao J, Kraeft SK, Collins LC, Sabel MS, Argani P, Gelman R, Schnitt SJ, Krop IE, Polyak K (2008) Epithelial and stromal cathepsin K and CXCL14 expression in breast tumor progression. Clin Cancer Res 14:5357–5367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein T, Bischoff R (2011) Active metalloproteases of the A Disintegrin and Metalloprotease (ADAM) family: biological function and structure. J Proteome Res 10:17–33

    CAS  PubMed  Google Scholar 

  • Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin V (2004) Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6:185–195

    CAS  PubMed  Google Scholar 

  • Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD, Nelson PS, Vasioukhin V (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A 105:2105–2110

    PubMed Central  PubMed  Google Scholar 

  • Klucky B, Mueller R, Vogt I, Teurich S, Hartenstein B, Breuhahn K, Flechtenmacher C, Angel P, Hess J (2007) Kallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res 67:8198–8206

    CAS  PubMed  Google Scholar 

  • Kohga K, Takehara T, Tatsumi T, Miyagi T, Ishida H, Ohkawa K, Kanto T, Hiramatsu N, Hayashi N (2009) Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res 69:8050–8057

    CAS  PubMed  Google Scholar 

  • Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, Hayashi N (2010) Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 51:1264–1273

    CAS  PubMed  Google Scholar 

  • Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    CAS  PubMed  Google Scholar 

  • Kos J, Sekirnik A, Premzl A, Zavasnik Bergant V, Langerholc T, Turk B, Werle B, Golouh R, Repnik U, Jeras M, Turk V (2005) Carboxypeptidases cathepsins X and B display distinct protein profile in human cells and tissues. Exp Cell Res 306:103–113

    CAS  PubMed  Google Scholar 

  • Kothapalli R, Bailey RD, Kusmartseva I, Mane S, Epling-Burnette PK, Loughran TP Jr (2003) Constitutive expression of cytotoxic proteases and down-regulation of protease inhibitors in LGL leukemia. Int J Oncol 22:33–39

    CAS  PubMed  Google Scholar 

  • Lai LC, Erbas H, Lennard TWJ, Peaston RT (1996) Prostate-specific antigen in breast cyst fluid: Possible role of prostate-specific antigen in hormone-dependent breast cancer. Int J Cancer 66:743–746

    CAS  PubMed  Google Scholar 

  • Lankelma JM, Voorend DM, Barwari T, Koetsveld J, Van der Spek AH, De Porto AP, Van Rooijen G, Van Noorden CJ (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233

    CAS  PubMed  Google Scholar 

  • Le Gall C, Bellahcene A, Bonnelye E, Gasser JA, Castronovo V, Green J, Zimmermann J, Clezardin P (2007) A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res 67:9894–9902

    PubMed  Google Scholar 

  • Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    CAS  PubMed  Google Scholar 

  • Lepage M, Dow WC, Melchior M, You Y, Fingleton B, Quarles CC, Pepin C, Gore JC, Matrisian LM, McIntyre JO (2007) Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Mol Imaging 6:393–403

    CAS  PubMed  Google Scholar 

  • Leung WK (2006) Helicobacter pylori and gastric neoplasia. Contrib Microbiol 13:66–80

    CAS  PubMed  Google Scholar 

  • Lewen S, Zhou H, Hu HD, Cheng T, Markowitz D, Reisfeld RA, Xiang R, Luo Y (2008) A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol Immunother 57:507–515

    CAS  PubMed  Google Scholar 

  • Lewiecki EM (2011) New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 7:631–638

    CAS  PubMed  Google Scholar 

  • Leytus SP, Loeb KR, Hagen FS, Kurachi K, Davie EW (1988) A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human-liver and hepatoma-cells. Biochemistry 27:1067–1074

    CAS  PubMed  Google Scholar 

  • Li WP, Anderson CJ (2003) Imaging matrix metalloproteinase expression in tumors. Q J Nucl Med 47:201–208

    CAS  PubMed  Google Scholar 

  • Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646

    CAS  PubMed  Google Scholar 

  • Lindahl C, Simonsson M, Bergh A, Thysell E, Antti H, Sund M, Wikstrom P (2009) Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genomics Proteomics 6:149–159

    CAS  PubMed  Google Scholar 

  • Linnerth NM, Sirbovan K, Moorehead RA (2005) Use of a transgenic mouse model to identify markers of human lung tumors. Int J Cancer 114:977–982

    CAS  PubMed  Google Scholar 

  • Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68

    CAS  PubMed  Google Scholar 

  • List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19:1934–1950

    CAS  PubMed  Google Scholar 

  • List K, Szabo R, Molinolo A, Nielsen BS, Bugge TH (2006) Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168:1513–1525

    CAS  PubMed  Google Scholar 

  • List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A, Bugge TH (2009) Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 175:1453–1463

    CAS  PubMed  Google Scholar 

  • Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y, Williams K, Brenot A, Gordon JI, Werb Z (2010) Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res 70:2224–2234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo PH, Lung HL, Cheung AK, Apte SS, Chan KW, Kwong FM, Ko JM, Cheng Y, Law S, Srivastava G, Zabarovsky ER, Tsao SW, Tang JC, Stanbridge EJ, Lung ML (2010) Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. Cancer Res 70:5567–5576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, Massague J, Kang Y (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23:1882–1894

    CAS  PubMed  Google Scholar 

  • Ludwig A, Hundhausen C, Lambert MH, Broadway N, Andrews RC, Bickett DM, Leesnitzer MA, Becherer JD (2005) Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 8:161–171

    CAS  PubMed  Google Scholar 

  • Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Visser L, Roelofsen H, de Vries M, Diepstra A, van Imhoff G, van der Wal T, Luinge M, Alvarez-Llamas G, Vos H, Poppema S, Vonk R, van den Berg A (2008) Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood 111:2339–2346

    CAS  PubMed  Google Scholar 

  • Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA, Catalona WJ, Watson MA, Milbrandt J (2001) Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61:5692–5696

    CAS  PubMed  Google Scholar 

  • Mai J, Finley RL Jr, Waisman DM, Sloane BF (2000) Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells. J Biol Chem 275:12806–12812

    CAS  PubMed  Google Scholar 

  • Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM (2001) A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413:323–327

    CAS  PubMed  Google Scholar 

  • Malla R, Gopinath S, Alapati K, Gondi CS, Gujrati M, Dinh DH, Mohanam S, Rao JS (2010) Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas. PLoS One 5:e13731

    PubMed Central  PubMed  Google Scholar 

  • Malla RR, Gopinath S, Gondi CS, Alapati K, Dinh DH, Gujrati M, Rao JS (2011) Cathepsin B and uPAR knockdown inhibits tumor-induced angiogenesis by modulating VEGF expression in glioma. Cancer Gene Ther 18:419–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malla RR, Gopinath S, Gondi CS, Alapati K, Dinh DH, Tsung AJ, Rao JS (2012) uPAR and cathepsin B downregulation induces apoptosis by targeting calcineurin A to BAD via Bcl-2 in glioma. J Neurooncol 107:69–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manton KJ, Douglas ML, Netzel-Arnett S, Fitzpatrick DR, Nicol DL, Boyd AW, Clements JA, Antalis TM (2005) Hypermethylation of the 5′ CpG island of the gene encoding the serine protease Testisin promotes its loss in testicular tumorigenesis. Br J Cancer 92:760–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C (2007) Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282:18573–18583

    CAS  PubMed  Google Scholar 

  • Marlowe DE (2005) Nanotechnology and the U.S. Food and Drug Administration. Stand News 33:29–31

    PubMed  Google Scholar 

  • Marten A, Zeiss N, Serba S, Mehrle S, von Lilienfeld-Toal M, Schmidt J (2008) Bortezomib is ineffective in an orthotopic mouse model of pancreatic adenocarcinoma. Mol Cancer Ther 7:3624–3631

    PubMed  Google Scholar 

  • Martin MD, Carter KJ, Jean-Philippe SR, Chang M, Mobashery S, .Thiolloy S, Lynch CC, Matrisian LM, Fingleton B (2008) Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res 68:6251–6259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masset A, Maillard C, Sounni NE, Jacobs N, Bruyere F, Delvenne P, Tacke M, Reinheckel T, Foidart J-M, Coussens LM, Noel A (2011) Unimpeded skin carcinogenesis in K14-HPV16 transgenic mice deficient for plasminogen activator inhibitor. Int J Cancer 128:283–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masson R, Lefebvre O, Noel A, Fahime ME, Chenard MP, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart JM, Basset P, Rio MC (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140:1535–1541

    CAS  PubMed  Google Scholar 

  • Matsuo Y, Sawai H, Ochi N, Yasuda A, Sakamoto M, Takahashi H, Funahashi H, Takeyama H, Guha S (2010) Proteasome inhibitor MG132 inhibits angiogenesis in pancreatic cancer by blocking NF-kappaB activity. Dig Dis Sci 55:1167–1176

    CAS  PubMed  Google Scholar 

  • Maycotte P, Thorburn A (2011) Autophagy and cancer therapy. Cancer Biol Ther 11:127–137

    CAS  PubMed  Google Scholar 

  • McCawley LJ, Crawford HC, King LE Jr, Mudgett J, Matrisian LM (2004) A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64:6965–6972

    CAS  PubMed  Google Scholar 

  • McCawley LJ, Wright J, LaFleur BJ, Crawford HC, Matrisian LM (2008) Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. Am J Pathol 173:1528–1539

    CAS  PubMed  Google Scholar 

  • McConkey DJ (2008) A novel role for a familiar protein in apoptosis induced by proteasome inhibition. Cancer Cell 14:1–2

    CAS  PubMed  Google Scholar 

  • McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11:164–179

    CAS  PubMed  Google Scholar 

  • McCormick F (2011) Cancer therapy based on oncogene addiction. J Surg Oncol 103:464–467

    CAS  PubMed  Google Scholar 

  • McIntyre JO, Matrisian LM (2003) Molecular imaging of proteolytic activity in cancer. J Cell Biochem 90:1087–1097

    CAS  PubMed  Google Scholar 

  • McIntyre JO, Scherer RL, Matrisian LM (2010) Near-infrared optical proteolytic beacons for in vivo imaging of matrix metalloproteinase activity. Methods Mol Biol 622:279–304

    CAS  PubMed  Google Scholar 

  • McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100:1160–1167

    CAS  PubMed  Google Scholar 

  • Meissner M, Reichenbach G, Stein M, Hrgovic I, Kaufmann R, Gille J (2009) Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells. Cancer Res 69:1976–1984

    CAS  PubMed  Google Scholar 

  • Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6:594–602

    CAS  PubMed  Google Scholar 

  • Mikolajczyk SD, Millar LS, Kumar A, Saedi MS (1999) Prostatic human kallikrein 2 inactivates and complexes with plasminogen activator inhibitor-1. Int J Cancer 81:438–442

    CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    CAS  PubMed  Google Scholar 

  • Moin K, McIntyre OJ, Matrisian LM, Sloane BF (2007) Fluorescent imaging of tumors. In: Shields A, Price P (eds) In vivo imaging of cancer therapy. Humana, Totawa, pp 281–302

    Google Scholar 

  • Moin K, Sameni M, Victor BC, Rothberg JM, Mattingly RR, Sloane BF (2012) 3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. Methods Enzymol 506:175–194

    CAS  PubMed  Google Scholar 

  • Mok SC, Chao J, Skates S, Wong KK, Yiu GK, Muto MG, Berkowitz RS, Cramer DW (2001) Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 93:1458–1464

    CAS  PubMed  Google Scholar 

  • Mongaret C, Alexandre J, Thomas-Schoemann A, Bermudez E, Chereau C, Nicco C, Goldwasser F, Weill B, Batteux F, Lemare F (2011) Tumor invasion induced by oxidative stress is dependent on membrane ADAM 9 protein and its secreted form. Int J Cancer 129:791–798

    CAS  PubMed  Google Scholar 

  • Moran P, Li W, Fan B, Vij R, Eigenbrot C, Kirchhofer D (2006) Pro-urokinase-type plasminogen activator is a substrate for hepsin. J Biol Chem 281:30439–30446

    CAS  PubMed  Google Scholar 

  • Mu CJ, Lavan DA, Langer RS, Zetter BR (2010) Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo. ACS Nano 4:1511–1520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8:929–941

    CAS  PubMed  Google Scholar 

  • Murray KT, Merriman CS, Adamson C (2008) Use of the HESI Admission Assessment to predict student success. Comput Inform Nurs 26:61S–66S

    PubMed  Google Scholar 

  • Murumkar PR, DasGupta S, Chandani SR, Giridhar R, Yadav MR (2010) Novel TACE inhibitors in drug discovery: a review of patented compounds. Expert Opin Ther Pat 20:31–57

    CAS  PubMed  Google Scholar 

  • Nakamura K, Hongo A, Kodama J, Hiramatsu Y (2011) The role of hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 in endometrial cancer. Int J Cancer 128:2613–2624

    CAS  PubMed  Google Scholar 

  • Nalla AK, Gorantla B, Gondi CS, Lakka SS, Rao JS (2010) Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther 17:599–613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, Antalis AM (2003) Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22:237–258

    CAS  PubMed  Google Scholar 

  • Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, Tsien RY (2010) Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A 107:4317–4322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nickeleit I, Zender S, Sasse F, Geffers R, Brandes G, Sorensen I, Steinmetz H, Kubicka S, Carlomagno T, Menche D, Gutgemann I, Buer J, Gossler A, Manns MP, Kalesse M, Frank R, Malek NP (2008) Argyrin a reveals a critical role for the tumor suppressor protein p27(kip1) in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 14:23–35

    CAS  PubMed  Google Scholar 

  • Nielsen BS, Egeblad M, Rank F, Askautrud HA, Pennington CJ, Pedersen TX, Christensen IJ, Edwards DR, Werb Z, Lund LR (2008) Matrix metalloproteinase 13 is induced in fibroblasts in polyomavirus middle T antigen-driven mammary carcinoma without influencing tumor progression. PLoS One 3:e2959

    PubMed Central  PubMed  Google Scholar 

  • Obaidat A, Weiss J, Wahlgren B, Manam RR, Macherla VR, McArthur K, Chao TH, Palladino MA, Lloyd GK, Potts BC, Enna SJ, Neuteboom ST, Hagenbuch B (2011) Proteasome regulator marizomib (NPI-0052) exhibits prolonged inhibition, attenuated efflux, and greater cytotoxicity than its reversible analogs. J Pharmacol Exp Ther 337:479–486

    CAS  PubMed  Google Scholar 

  • Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, al-Nafussi A, Smyth JF, Gabra H, Sellar GC (2002) Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: Correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 8:1101–1107

    CAS  PubMed  Google Scholar 

  • Ogden SR, Noto JM, Allen SS, Patel DA, Romero-Gallo J, Washington MK, Fingleton B, Israel DA, Lewis ND, Wilson KT, Chaturvedi R, Zhao Z, Shyr Y, Peek RM Jr (2010) Matrix metalloproteinase-7 and premalignant host responses in Helicobacter pylori-infected mice. Cancer Res 70:30–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oikawa T, Sasaki T, Nakamura M, Shimamura M, Tanahashi N, Omura S, Tanaka K (1998) The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 246:243–248

    CAS  PubMed  Google Scholar 

  • Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY (2010) Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci U S A 107:4311–4316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onishi T, Hayashi N, Theriault RL, Hortobagyi GN, Ueno NT (2010) Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol 7:641–651

    CAS  PubMed  Google Scholar 

  • Ordonez GR, Puente XS, Quesada V, Lopez-Otin C (2009) Proteolytic systems: constructing degradomes. Methods Mol Biol 539:33–47

    CAS  PubMed  Google Scholar 

  • Page MJ, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65:1220–1236

    CAS  PubMed  Google Scholar 

  • Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    CAS  PubMed  Google Scholar 

  • Palavalli LH, Prickett TD, Wunderlich JR, Wei X, Burrell AS, Porter-Gill P, Davis S, Wang C, Cronin JC, Agrawal NS, Lin JC, Westbroek W, Hoogstraten-Miller S, Molinolo AA, Fetsch P, Filie AC, O’Connell MP, Banister CE, Howard JD, Buckhaults P, Weeraratna AT, Brody LC, Rosenberg SA, Samuels Y (2009) Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 41:518–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paliouras M, Borgono C, Diamandis EP (2007) Human tissue kallikreins: the cancer biomarker family. Cancer Lett 249:61–79

    CAS  PubMed  Google Scholar 

  • Paraoan L, Gray D, Hiscott P, Garcia-Finana M, Lane B, Damato B, Grierson I (2009) Cathepsin S and its inhibitor cystatin C: imbalance in uveal melanoma. Front Biosci 14:2504–2513

    CAS  Google Scholar 

  • Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    CAS  PubMed  Google Scholar 

  • Pendas AM, Folgueras AR, Llano E, Caterina J, Frerard F, Rodriguez F, Astudillo A, Noel A, Birkedal-Hansen H, Lopez-Otin C (2004) Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 24:5304–5313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piazuelo MB, Epplein M, Correa P (2010) Gastric cancer: an infectious disease. Infect Dis Clin North Am 24:853–869, vii

    Google Scholar 

  • Podgorski I, Linebaugh BE, Koblinski JE, Rudy DL, Herroon MK, Olive MB, Sloane BF (2009) Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis. Am J Pathol 175:1255–1269

    CAS  PubMed  Google Scholar 

  • Pories SE, Zurakowski D, Roy R, Lamb CC, Raza S, Exarhopoulos A, Scheib RG, Schumer S, Lenahan C, Borges V, Louis GW, Anand A, Isakovich N, Hirshfield-Bartek J, Wewer U, Lotz MM, Moses MA (2008) Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment. Cancer Epidemiol Biomarkers Prev 17:1034–1042

    CAS  PubMed  Google Scholar 

  • Potts BC, Albitar MX, Anderson KC, Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC Jr, Fenical W, Ghobrial IM, Groll M, Jensen PR, Lam KS, Lloyd GK, McBride W, McConkey DJ, Miller C, Neuteboom STC, Oki Y, Ovaa H, Pajonk F, Richardson PG, Roccaro AM, Sloss CM, Spear MA, Valashi E, Younes A, Palladino MA (2011) Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 11:254–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puchi M, Garcia-Huidobro J, Cordova C, Aguilar R, Dufey E, Imschenetzky M, Bustos P, Morin V (2010) A new nuclear protease with cathepsin L properties is present in HeLa and Caco-2 cells. J Cell Biochem 111:1099–1106

    CAS  PubMed  Google Scholar 

  • Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    CAS  PubMed  Google Scholar 

  • Puente XS, Sanchez LM, Gutierrez-Fernandez A, Velasco G, Lopez-Otin C (2005) A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 33:331–334

    CAS  PubMed  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    CAS  PubMed  Google Scholar 

  • Qu P, Du H, Wang X, Yan C (2009) Matrix metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchioalveolar adenocarcinoma transition. Cancer Res 69:7252–7261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quintanilla-Dieck MJ, Codriansky K, Keady M, Bhawan J, Runger TM (2008) Cathepsin K in melanoma invasion. J Invest Dermatol 128:2281–2288

    CAS  PubMed  Google Scholar 

  • Rachner TD, Hadji P, Hofbauer LC (2012) Novel therapies in benign and malignant bone diseases. Pharmacol Ther 134:338–344

    CAS  PubMed  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rafn B, Nielsen CF, Andersen SH, Szyniarowski P, Corcelle-Termeau E, Valo E, Fehrenbacher N, Olsen CJ, Daugaard M, Egebjerg C, Bottzauw T, Kohonen P, Nylandsted J, Hautaniemi S, Moreira J, Jaattela M, Kallunki T (2012) ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol Cell 45:764–776

    CAS  PubMed  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    CAS  PubMed  Google Scholar 

  • Rao Malla R, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS (2012) Knockdown of cathepsin B and uPAR inhibits CD151 and alpha3beta1 integrin-mediated cell adhesion and invasion in glioma. Mol Carcinog. doi:10.1002/mc.21915

  • Rapa I, Volante M, Cappia S, Rosas R, Scagliotti GV, Papotti M (2006) Cathepsin K is selectively expressed in the stroma of lung adenocarcinoma but not in bronchioloalveolar carcinoma. A useful marker of invasive growth. Am J Clin Pathol 125:847–854

    CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(Pt 1):205–218

    CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    CAS  PubMed  Google Scholar 

  • Ribatti D (2009) Endogenous inhibitors of angiogenesis: a historical review. Leuk Res 33:638–644

    CAS  PubMed  Google Scholar 

  • Rocks N, Paulissen G, Quesada-Calvo F, Munaut C, Gonzalez ML, Gueders M, Hacha J, Gilles C, Foidart JM, Noel A, Cataldo DD (2008) ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo. Cancer Res 68:9541–9550

    CAS  PubMed  Google Scholar 

  • Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, Siegel PM (2010) ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One 5:e12093

    PubMed Central  PubMed  Google Scholar 

  • Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM (1998) The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 58:5500–5506

    CAS  PubMed  Google Scholar 

  • Ruffell B, Affara NI, Cottone L, Junankar S, Johansson M, DeNardo DG, Korets L, Reinheckel T, Sloane BF, Bogyo M, Coussens LM (2013) Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev (in press)

    Google Scholar 

  • Rumpler G, Becker B, Hafner C, McClelland M, Stolz W, Landthaler M, Schmitt R, Bosserhoff A, Vogt T (2003) Identification of differentially expressed genes in models of melanoma progression by cDNA array analysis: SPARC, MIF and a novel cathepsin protease characterize aggressive phenotypes. Exp Dermatol 12:761–771

    CAS  PubMed  Google Scholar 

  • Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, Lopez-Otin C, Shapiro S, Inada M, Krane S, Allen E, Chung D, Weiss SJ (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781

    CAS  PubMed  Google Scholar 

  • Sacco JJ, Coulson JM, Clague MJ, Urbe S (2010) Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62:140–157

    CAS  PubMed  Google Scholar 

  • Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A 95:13453–13458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakashita K, Mimori K, Tanaka F, Tahara K, Inoue H, Sawada T, Ohira M, Hirakawa K, Mori M (2008) Clinical significance of low expression of prostasin mRNA in human gastric cancer. J Surg Oncol 98:559–564

    CAS  PubMed  Google Scholar 

  • Saleem M, Adhami VM, Zhong WX, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H (2006) A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15:217–227

    CAS  PubMed  Google Scholar 

  • Sameni M, Dosescu J, Yamada KM, Sloane BF, Cavallo-Medved D (2008) Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells. Mol Imaging 7:199–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santamaria I, Velasco G, Pendas AM, Paz A, Lopez-Otin C (1999) Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. J Biol Chem 274:13800–13809

    CAS  PubMed  Google Scholar 

  • Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C, Kruger A (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 285:26335–26340

    CAS  PubMed  Google Scholar 

  • Scherer RL, McIntyre JO, Matrisian LM (2008a) Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev 27:679–690

    PubMed  Google Scholar 

  • Scherer RL, VanSaun MN, McIntyre JO, Matrisian LM (2008b) Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Mol Imaging 7:118–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Ulm K, Hofler H, Janicke F, Graeff H (1997) Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 78:285–296

    CAS  PubMed  Google Scholar 

  • Schurigt U, Sevenich L, Vannier C, Gajda M, Schwinde A, Werner F, Stahl A, von Elverfeldt D, Becker AK, Bogyo M, Peters C, Reinheckel T (2008) Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol Chem 389:1067–1074

    CAS  PubMed  Google Scholar 

  • Seemuller E, Dolenc I, Lupas A (2004) Eukaryotic 20S proteasome. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, vol 2, 2nd edn. Elsevier, London, pp 2068–2077

    Google Scholar 

  • Selzer-Plon J, Bornholdt J, Friis S, Bisgaard HC, Lothe IMB, Tveit KM, Kure EH, Vogel U, Vogel LK (2009) Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis. BMC Cancer 9:201

    PubMed Central  PubMed  Google Scholar 

  • Sevenich L, Hagemann S, Stoeckle C, Tolosa E, Peters C, Reinheckel T (2010a) Expression of human cathepsin L or human cathepsin V in mouse thymus mediates positive selection of T helper cells in cathepsin L knock-out mice. Biochimie 92:1674–1680

    CAS  PubMed  Google Scholar 

  • Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S, Vasiljeva O, Schwinde A, Klemm N, Deussing J, Peters C, Reinheckel T (2010b) Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A 107:2497–2502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah S, Small E (2010) Emerging biological observations in prostate cancer. Expert Rev Anticancer Ther 10:89–101

    CAS  PubMed  Google Scholar 

  • Sharghi-Namini S, Fan H, Sulochana KN, Potturi P, Xiang W, Chong YS, Wang Z, Yang H, Ge R (2008) The first but not the second thrombospondin type 1 repeat of ADAMTS5 functions as an angiogenesis inhibitor. Biochem Biophys Res Commun 371:215–219

    CAS  PubMed  Google Scholar 

  • Shchors K, Nozawa H, Xu J, Rostker F, Swigart-Brown L, Evan G, Hanahan D (2013) Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis. Oncogene 32(4):502–513

    CAS  PubMed  Google Scholar 

  • Shi GP, Bryant RA, Riese R, Verhelst S, Driessen C, Li Z, Bromme D, Ploegh HL, Chapman HA (2000) Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J Exp Med 191:1177–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shigemasa K, Underwood LJ, Beard J, Tanimoto H, Ohama K, Parmley TH, O’Brien TJ (2000) Overexpression of testisin, a serine protease expressed by testicular germ cells, in epithelial ovarian tumor cells. J Soc Gynecol Investig 7:358–362

    CAS  PubMed  Google Scholar 

  • Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25:2465–2479

    CAS  PubMed  Google Scholar 

  • Sinnamon MJ, Carter KJ, Fingleton B, Matrisian LM (2008) Matrix metalloproteinase-9 contributes to intestinal tumourigenesis in the adenomatous polyposis coli multiple intestinal neoplasia mouse. Int J Exp Pathol 89:466–475

    PubMed Central  PubMed  Google Scholar 

  • Sinnathamby G, Zerfass J, Hafner J, Block P, Nickens Z, Hobeika A, Secord AA, Lyerly HK, Morse MA, Philip R (2011) ADAM metallopeptidase domain 17 (ADAM17) is naturally processed through major histocompatibility complex (MHC) class I molecules and is a potential immunotherapeutic target in breast, ovarian and prostate cancers. Clin Exp Immunol 163:324–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sloane BF, Moin K, Sameni M, Tait LR, Rozhin J, Ziegler G (1994) Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene. J Cell Sci 107(Pt 2):373–384

    CAS  PubMed  Google Scholar 

  • Staack A, Tolic D, Kristiansen G, Schnorr D, Loening SA, Jung K (2004) Expression of cathepsins B, H, and L and their inhibitors as markers of transitional cell carcinoma of the bladder. Urology 63:1089–1094

    PubMed  Google Scholar 

  • Stahl S, Reinders Y, Asan E, Mothes W, Conzelmann E, Sickmann A, Felbor U (2007) Proteomic analysis of cathepsin B- and L-deficient mouse brain lysosomes. Biochim Biophys Acta 1774:1237–1246

    CAS  PubMed  Google Scholar 

  • Stamey TA, Warrington JA, Caldwell MC, Chen ZX, Fan ZB, Mahadevappa M, McNeal JE, Nolley R, Zhang ZM (2001) Molecular genetic profiling of gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J Urol 166:2171–2177

    CAS  PubMed  Google Scholar 

  • Stephan C, Yousef GM, Scorilas A, Jung K, Jung M, Kristiansen G, Hauptmann S, Kishi T, Nakamura T, Loening SA, Diamandis EP (2004) Hepsin is highly over expressed in and a new candidate for a prognostic indicator in prostate cancer. J Urol 171:187–191

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG (2011) The calpain system and cancer. Nat Rev Cancer 11:364–374

    CAS  PubMed  Google Scholar 

  • Sturge J, Caley MP, Waxman J (2011) Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol 8:357–368

    CAS  PubMed  Google Scholar 

  • Sullivan S, Tosetto M, Kevans D, Coss A, Wang L, O’Donoghue D, Hyland J, Sheahan K, Mulcahy H, O’Sullivan J (2009) Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer. Int J Cancer 125:54–61

    CAS  PubMed  Google Scholar 

  • Sun SC (2010) CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ 17:25–34

    CAS  PubMed  Google Scholar 

  • Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl Bancroft C, Sausville E, Adams J, Elliott P, Van Waes C (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7:1419–1428

    CAS  PubMed  Google Scholar 

  • Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA, Gutkind JS, Bugge TH (2011) c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 30:2003–2016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabova L, Chrysovergis K, Yamada SS, Holmbeck K (2008) MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 27:3274–3281

    CAS  PubMed  Google Scholar 

  • Takahashi S, Suzuki S, Inaguma S, Ikeda Y, Cho YM, Hayashi N, Inoue T, Sugimura Y, Nishiyama N, Fujita T, Chao J, Ushijima T, Shirai T (2003) Down-regulated expression of prostasin in high-grade or hormone-refractory human prostate cancers. Prostate 54:187–193

    CAS  PubMed  Google Scholar 

  • Takayama TK, McMullen BA, Nelson PS, Matsumura M, Fujikawa K (2001) Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry 40:15341–15348

    CAS  PubMed  Google Scholar 

  • Tang T, Kmet M, Corral L, Vartanian S, Tobler A, Papkoff J (2005) Testisin, a glycosyl-phosphatidylinositol-linked serine protease, promotes malignant transformation in vitro and in vivo. Cancer Res 65:868–878

    CAS  PubMed  Google Scholar 

  • Tape CJ, Willems SH, Dombernowsky SL, Stanley PL, Fogarasi M, Ouwehand W, McCafferty J, Murphy G (2011) Cross-domain inhibition of TACE ectodomain. Proc Natl Acad Sci U S A 108:5578–5583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K (2010) Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 391:923–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Testa U (2009) Proteasome inhibitors in cancer therapy. Curr Drug Targets 10:968–981

    CAS  PubMed  Google Scholar 

  • Thiolloy S, Edwards JR, Fingleton B, Rifkin DB, Matrisian LM, Lynch CC (2012) An osteoblast-derived proteinase controls cell survival via TGF-beta activation in the bone microenvironment. PLoS One 7:e29862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiolloy S, Halpern J, Holt GE, Schwartz HS, Mundy GR, Matrisian LM, Lynch CC (2009) Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis. Cancer Res 69:6747–6755

    CAS  PubMed Central  PubMed  Google Scholar 

  • To S, Rodda SJ, Rathjen PD, Keough RA (2010) Modulation of CP2 family transcriptional activity by CRTR-1 and sumoylation. PLoS One 5:e11702

    PubMed Central  PubMed  Google Scholar 

  • Tomita A, Kasaoka T, Inui T, Toyoshima M, Nishiyama H, Saiki H, Iguchi H, Nakajima M (2008) Human breast adenocarcinoma (MDA-231) and human lung squamous cell carcinoma (Hara) do not have the ability to cause bone resorption by themselves during the establishment of bone metastasis. Clin Exp Metastasis 25:437–444

    CAS  PubMed  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao XH, Tchinda J, Lee C, Shah RB, Rubin MA, Chinnaiyan AM (2006) Recurrent fusion of TMPRSS2 and ETS transcription factors in prostate cancer. FASEB J 20:A1327

    Google Scholar 

  • Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, Yu J, Wang L, Montie JE, Rubin MA, Pienta KJ, Roulston D, Shah RB, Varambally S, Mehra R, Chinnaiyan AM (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448:595–599

    CAS  PubMed  Google Scholar 

  • Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, Cao Q, Prensner JR, Rubin MA, Shah RB, Mehra R, Chinnaiyan AM (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia (New York, NY) 10:177–188

    CAS  Google Scholar 

  • Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, Schalken JA (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286

    CAS  PubMed  Google Scholar 

  • Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, Quaranta V (2008) Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem 283:30576–30584

    CAS  PubMed  Google Scholar 

  • Tsuji A, Torresrosado A, Arai T, Lebeau MM, Lemons RS, Chou SH, Kurachi K (1991) Hepsin, a cell membrane-associated protease – characterization, tissue distribution, and gene localization. J Biol Chem 266:16948–16953

    CAS  PubMed  Google Scholar 

  • Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94:15–21

    CAS  PubMed  Google Scholar 

  • Tummalapalli P, Spomar D, Gondi CS, Olivero WC, Gujrati M, Dinh DH, Rao JS (2007) RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. Int J Oncol 31:1039–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88

    CAS  PubMed  Google Scholar 

  • Turner SL, Blair-Zajdel ME, Bunning RA (2009) ADAMs and ADAMTSs in cancer. Br J Biomed Sci 66:117–128

    CAS  PubMed  Google Scholar 

  • Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610

    CAS  PubMed  Google Scholar 

  • van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 284:31018–31027

    PubMed  Google Scholar 

  • Vasiljeva O, Turk B (2008) Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie 90:380–386

    CAS  PubMed  Google Scholar 

  • Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250

    CAS  PubMed  Google Scholar 

  • Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojic L, Kruger A, Schurigt U, Sevenich L, Turk B, Peters C, Reinheckel T (2008) Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27:4191–4199

    CAS  PubMed  Google Scholar 

  • Vazquez-Ortiz G, Pina-Sanchez P, Vazquez K, Duenas A, Taja L, Mendoza P, Garcia JA, Salcedo M (2005) Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer 5:68

    PubMed Central  PubMed  Google Scholar 

  • Veeravalli KK, Chetty C, Ponnala S, Gondi CS, Lakka SS, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS (2010) MMP-9, uPAR and cathepsin B silencing downregulate integrins in human glioma xenograft cells in vitro and in vivo in nude mice. PLoS One 5:e11583

    PubMed Central  PubMed  Google Scholar 

  • Vink JM, Boomsma DI (2002) Gene finding strategies. Biol Psychol 61:53–71

    PubMed  Google Scholar 

  • Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen EDK, Vogel U, Kure EH (2006) The ratio of Matriptase/HAI-l mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 6:176

    PubMed Central  PubMed  Google Scholar 

  • Voutsadakis IA (2008) The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta 1782:800–808

    CAS  PubMed  Google Scholar 

  • Wagner S, Breyholz HJ, Faust A, Holtke C, Levkau B, Schober O, Schafers M, Kopka K (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13:2819–2838

    CAS  PubMed  Google Scholar 

  • Wagstaff L, Kelwick R, Decock J, Edwards DR (2011) The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Front Biosci 16:1861–1872

    CAS  Google Scholar 

  • Wallrapp C, Hahnel S, Muller-Pillasch F, Burghardt B, Iwamura T, Ruthenburger M, Lerch MM, Adler G, Gress TM (2000) A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res 60:2602–2606

    CAS  PubMed  Google Scholar 

  • Wang B, Shi GP, Yao PM, Li Z, Chapman HA, Bromme D (1998) Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. J Biol Chem 273:32000–32008

    CAS  PubMed  Google Scholar 

  • Wang B, Sun J, Kitamoto S, Yang M, Grubb A, Chapman HA, Kalluri R, Shi GP (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029

    CAS  PubMed  Google Scholar 

  • Ward C, Kuehn D, Burden RE, Gormley JA, Jaquin TJ, Gazdoiu M, Small D, Bicknell R, Johnston JA, Scott CJ, Olwill SA (2010) Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. PLoS One 5:e12543

    PubMed Central  PubMed  Google Scholar 

  • Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23:97–105

    PubMed  Google Scholar 

  • Webb SL, Sanders AJ, Mason MD, Jiang WG (2011) Type II Transmembrane Serine Protease (TTSP) deregulation in cancer. Front Biosci 16:539–552

    CAS  Google Scholar 

  • Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378

    CAS  PubMed  Google Scholar 

  • Wex T, Levy B, Wex H, Bromme D (1999) Human cathepsins F and W: a new subgroup of cathepsins. Biochem Biophys Res Commun 259:401–407

    CAS  PubMed  Google Scholar 

  • Wijkmans J, Gossen J (2011) Inhibitors of cathepsin K: a patent review (2004–2010). Expert Opin Ther Pat 21:1611–1629

    CAS  PubMed  Google Scholar 

  • Williams SA, Xu Y, De Marzo AM, Isaacs JT, Denmeade SR (2010) Prostate-specific antigen (PSA) is activated by KLK2 in prostate cancer ex vivo models and in prostate-targeted PSA/KLK2 double transgenic mice. Prostate 70:788–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A 94:1402–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson TR, Johnston PG, Longley DB (2009) Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets 9:307–319

    CAS  PubMed  Google Scholar 

  • Withana NP, Blum G, Sameni M, Slaney C, Anbalagan A, Olive MB, Bidwell BN, Edgington L, Wang L, Moin K, Sloane BF, Anderson RL, Bogyo MS, Parker BS (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72:1199–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witters L, Scherle P, Friedman S, Fridman J, Caulder E, Newton R, Lipton A (2008) Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor. Cancer Res 68:7083–7089

    CAS  PubMed  Google Scholar 

  • Witty JP, Lempka T, Coffey RJ Jr, Matrisian LM (1995) Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Res 55:1401–1406

    CAS  PubMed  Google Scholar 

  • Wu QY, Parry G (2007) Hepsin and prostate cancer. Front Biosci 12:5052–5059

    CAS  PubMed  Google Scholar 

  • Wu SK, Sakamoto KM, Milani M, Aldana-Masankgay G, Fan D, Wu K, Lee CW, Cho CH, Yu J, Sung JJ (2010) Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Updat 13:87–92

    CAS  PubMed  Google Scholar 

  • Wu SM, Huang YH, Yeh CT, Tsai MM, Liao CH, Cheng WL, Chen WJ, Lin KH (2011) Cathepsin H regulated by the thyroid hormone receptors associate with tumor invasion in human hepatoma cells. Oncogene 30:2057–2069

    CAS  PubMed  Google Scholar 

  • Xu J, Attisano L (2000) Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 97:4820–4825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Li D, Ke Z, Liu R, Maubach G, Zhuo L (2009) Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. Mol Med Report 2:713–718

    CAS  Google Scholar 

  • Xuan JA, Schneider D, Toy P, Lin R, Newton A, Zhu Y, Finster S, Vogel D, Mintzer B, Dinter H, Light D, Parry R, Polokoff M, Whitlow M, Wu QY, Parry G (2006) Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture. Cancer Res 66:3611–3619

    CAS  PubMed  Google Scholar 

  • Yan S, Sloane BF (2003) Molecular regulation of human cathepsin B: implication in pathologies. Biol Chem 384:845–854

    CAS  PubMed  Google Scholar 

  • Yan X, Takahara M, Xie L, Oda Y, Nakahara T, Uchi H, Takeuchi S, Tu Y, Moroi Y, Furue M (2011) Stromal expression of cathepsin K in squamous cell carcinoma. J Eur Acad Dermatol Venereol 25:362–365

    CAS  PubMed  Google Scholar 

  • Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    CAS  PubMed  Google Scholar 

  • Yang Y, Lim SK, Choong LY, Lee H, Chen Y, Chong PK, Ashktorab H, Wang TT, Salto-Tellez M, Yeoh KG, Lim YP (2010) Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J Proteome Res 9:4767–4778

    CAS  PubMed  Google Scholar 

  • Yu JX, Chao L, Chao J (1994) Prostasin is a novel human serine proteinase from seminal fluid – purification, tissue distribution, and localization in prostate-gland. J Biol Chem 269:18843–18848

    CAS  PubMed  Google Scholar 

  • Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109

    CAS  PubMed  Google Scholar 

  • Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nor JE (2010) VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ 17:499–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng X, Chu F, Chou PM, Gallati C, Dier U, Mirkin BL, Mousa SA, Rebbaa A (2009) Cathepsin L inhibition suppresses drug resistance in vitro and in vivo: a putative mechanism. Am J Physiol Cell Physiol 296:C65–C74

    CAS  PubMed  Google Scholar 

  • Zhou HM, Nichols A, Meda P, Vassalli JD (2000) Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. EMBO J 19:4817–4826

    CAS  PubMed  Google Scholar 

  • Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E, Lo Y, Baribaud F, Mikami I, Reguart N, Yang G, Li Y, Yao W, Vaddi K, Gazdar AF, Friedman SM, Jablons DM, Newton RC, Fridman JS, Minna JD, Scherle PA (2006) Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10:39–50

    CAS  PubMed  Google Scholar 

  • Zigrino P, Nischt R, Mauch C (2011) The disintegrin-like and cysteine-rich domains of ADAM-9 mediate interactions between melanoma cells and fibroblasts. J Biol Chem 286:6801–6807

    CAS  PubMed  Google Scholar 

  • Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie F. Sloane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Sloane, B.F., List, K., Fingleton, B., Matrisian, L. (2013). Proteases in Cancer: Significance for Invasion and Metastasis. In: Brix, K., Stöcker, W. (eds) Proteases: Structure and Function. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0885-7_15

Download citation

Publish with us

Policies and ethics