Skip to main content

Close-Range Photogrammetric Techniques for Deformation Measurement: Applications to Landslides

  • Chapter
  • First Online:

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

In this chapter, the application of close-range photogrammetry for deformation measurements in the field of landslide investigation and monitoring is discussed. Main advantages of this approach are the non-contact operational capability, the large covered area on the slope to analyze, the high degree of automation, the high acquisition rate, the chance to derive information on the whole surface, not limited to a few control points (area-based deformation measurement), and, generally, a lower cost with respect to 3D scanning technology. Applications are organized into two categories: (1) surface-point tracking (SPT) and (2) comparison of surfaces obtained from dense image matching. Different camera configurations and geometric models to transform points from the image space to the object space are also discussed. In the last part of the chapter, a review of the applications reported in the literature and two case studies from the experience of the authors are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although in the common technical language, the term ‘real time’ is used for sensors that are able to provide immediate outputs, in landslide monitoring the time frequency should be referred to the speed of the observed process (see Scaioni et al. (2014b)). Consequently, an earth observation system able to measure the deformation of slow-moving landslides with periodical monthly rate measurements can be considered a real-time system. Generally, the term ‘quasi-real time’ is used for those observations where some tasks of the measurement process introduce a short delay in the output of results. However, in ‘quasi-real time’ systems such delay does not influence the exploitation of the outcomes.

  2. 2.

    Despite of the name, stereo-camera systems are not usually aimed at obtaining the stereoscopic vision and cameras may be convergent to improve precision along depth (Fraser 1996).

  3. 3.

    The full resolution of the sensor (3,872 × 2,592 pixel) was not used.

References

  • Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39, 80–97.

    Article  Google Scholar 

  • Akca, D. (2013). Photogrammetric monitoring of an artificially generated shallow landslide. The Photogrammetric Record, 28(142), 178–195.

    Article  Google Scholar 

  • Angeli, M., Pasuto, A., & Silvano, S. (2000). A critical review of landslide monitoring experiences. Engineering Geology, 55, 133–147.

    Article  Google Scholar 

  • Apollonio, F. I., Ballabeni, A., Gaiani, M., & Remondino, F. (2014). Evaluation of feature-based methods for automated network orientation. International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 47–54.

    Article  Google Scholar 

  • Araiba, K., & Sakai, N. (2014). Laser scanner application in monitoring short-term slope deformation. In K. Sassa, et al. (Eds.), Landslide science for a safer geoenvironment (Vol. 2, pp. 5–11). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011). A database and evaluation methodology for optical flow. International Journal of Computer Vision, 92(1), 1–31.

    Article  Google Scholar 

  • Baltsavias, E. P. (1991). Multiphoto geometrically constrained matching. Ph.D dissertation, Mitteilungen Nr. 49, p. 221. Institute of Geodesy and Photogrammetry, ETH Zurich.

    Google Scholar 

  • Barazzetti, L., Remondino, F., & Scaioni, M. (2010). Orientation and 3D modelling from markerless terrestrial images: combining accuracy with automation. The Photogrammetric Record, 25, 356–381.

    Article  Google Scholar 

  • Barbarella, M., Fiani, M., & Lugli, A. (2014). Multi-temporal terrestrial laser scanning survey of a landslide. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction(pp. 89–121). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Bethmann, F., & Luhmann, T. (2010). Least-squares matching with advanced geometric transformation models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5), 86–91.

    Google Scholar 

  • Bethmann, F., & Luhmann, T. (2014). Object-based multi-image semi-global matching—concept and first results. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 93–100.

    Article  Google Scholar 

  • Bitelli, G., Dubbini, M., & Zanutta, A. (2004). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(7B), 246–251.

    Google Scholar 

  • Cardenal, J., Mata, E., Perez-Garcia, J., Delgado, J., Andez, M., Gonzales, A., & Diaz-de-Teran, J. (2008). Close range digital photogrammetry techniques applied to landslide monitoring. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8), 235–240.

    Google Scholar 

  • Casson, B., Delacourt, C., & Allemand, P. (2005). Contribution of multi-temporal sensing images to characterize landslide slip surface—application to the La Clapiere Landslide (France). Natural Hazards and Earth System Sciences, 5(3), 425–437.

    Article  Google Scholar 

  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97.

    Article  Google Scholar 

  • Crosetto, M., Crippa, B., Biescas, E., Monserrat, O., Agudo, M., & Fernández, P. (2005). State-of-the-art of land deformation monitoring using SAR interferometry. Photogrammetrie, Fernerkundung, Geoinformation, 6, 497–510.

    Google Scholar 

  • Crosetto, M., Monserrat, O., Cuevas, M., & Crippa, B. (2011). Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sensing, 4, 305–318.

    Article  Google Scholar 

  • Crosetto, M., Monserrat, O., Luzi, G., Cuevas-Gonzáles, M., & Devanthéry, N. (2014). Discontinuous GBSAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 136–141.

    Article  Google Scholar 

  • Cruden, D. M., & Varnes, D. J. (1996). Landslides types and processes. In A.K. Turner & R.L. Schuster (Eds.), Landslides: Investigation and mitigation (pp. 36–75). Transportation Research Board Special Report No. 247, Washington, DC: National Academy Press.

    Google Scholar 

  • Dall’Asta, E., & Roncella, R. (2014). A comparison of semiglobal and local dense matching algorithms for surface reconstruction. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 187–194.

    Article  Google Scholar 

  • De Agostino, M., Lingua, A., & Piras, M. (2012). Rock face surveys using a LiDAR MMS. Italian Journal of Remote Sensing, 44, 141–151.

    Article  Google Scholar 

  • Debella-Gilo, M., & Kääb, A. (2012). Measurement of surface displacement and deformation of mass movements using Least Squares Matching of repeat high resolution satellite and aerial images. Remote Sensing, 4, 43–67.

    Article  Google Scholar 

  • Delacourt, C., Allemand, P., Casson, B., & Vadon, H. (2004). Velocity field of the ‘La Clapiere’ landslide measured by the correlation of aerial and QuickBird satellite images. Geophysical Research Letters, 31, paper No. 15619.

    Google Scholar 

  • Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B., Grandjean, P., et al. (2007). Remote-sensing techniques for analysing landslide kinematics: A review. Bulletin de la Société Géologique de France, 178(2), 89–100.

    Article  Google Scholar 

  • Dermanis, A. (2011). Fundamentals of surface deformation and application to construction monitoring. Applied Geomatics, 3(1), 9–22.

    Article  Google Scholar 

  • Dewez, T. J. B. (2014). Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 113–116.

    Article  Google Scholar 

  • Eisenbeiss, H., & Sauerbier, M. (2012). Investigation of UAV systems and flight modes for photogrammetric applications. The Photogrammetric Record, 26(136), 400–421.

    Article  Google Scholar 

  • Fastellini, G., Radicioni, F., & Stoppini, A. (2011). The Assisi landslide monitoring: A multi-year activity based on geomatic techniques. Applied Geomatics, 3(2), 91–100.

    Article  Google Scholar 

  • Feng, T., Liu, X., Scaioni, M., Lin, X., & Li, R. (2012). Real-time landslide monitoring using close-range stereo image sequences analysis. In Systems and Informatics (ICSAI), 2012 International Conference on (ICSAI 2012) (pp. 249–253), Yantai, P.R. China, May 19–21, 2012.

    Google Scholar 

  • Förstner, W., Gülch, E. (1987, June). A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, (pp. 281–305), Interlaken, Switzerland.

    Google Scholar 

  • Fraser, C. S. (1996). Network design. In K. B. Atkinson (Ed.), Close range photogrammetry and machine vision (pp. 256–281). Dunbeath, Caithness, Scotland, UK: Whittles Publishing.

    Google Scholar 

  • Fraser, C. S., Woods, A., & Brizzi, D. (1996). Hyper redundancy for accuracy enhancement in automated close range photogrammetry. The Photogrammetric Record, 20, 205–217.

    Article  Google Scholar 

  • Fraser, C. S. (2013). Automatic camera calibration in close range photogrammetry. Photogrammetric Engineering and Remote Sensing, 79, 381–388.

    Article  Google Scholar 

  • Froese, C. R., & Moreno, F. (2014). Structure and components for the emergency response and warning system on Turtle Mountain, Alberta, Canada. Natural Hazards, 70(3), 1689–1712.

    Article  Google Scholar 

  • Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multi-view stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362–1376.

    Article  Google Scholar 

  • Ghuffar, S., Székely, B., Roncat, A., & Pfeifer, N. (2013). Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5(6), 2720–2745.

    Article  Google Scholar 

  • Grün, A. (1985). Adaptive least squares correlation: a powerful image matching technique. South African Journal of Photogrammetry, Remote Sensing and Cartography, 14, 175–187.

    Google Scholar 

  • Grün, A., & Baltsavias, E. P. (1988). Geometrically constrained multiphoto matching. Photogrammetric Engineering and Remote Sensing, 54(5), 633–641.

    Google Scholar 

  • Grün, A. (2012). Development and status of image matching in photogrammetry. The Photogrammetric Record, 27, 36–57.

    Article  Google Scholar 

  • Gu, Z., Feng, T., Scaioni, M., Wu, H., Liu, J., Tong, X., & Li, R. (2014). Experimental results of elevation change analysis in the Antarctic Ice sheet using DEMs from ERS and ICESat data. Annals of Glaciology, 55(66), 198–204.

    Article  Google Scholar 

  • Guidi, G., Gonizzi, S., & Micoli, L. L. (2014). Image pre-processing for optimizing automated photogrammetry performances. ISPRS Annals of The Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 145–152. doi:10.5194/isprsannals-II-5-145-2014.

    Article  Google Scholar 

  • Haala N (2013) The landscape of dense image matching algorithms. In Proceedings of Photogrammetric Week 2013, Stuttgart, Germany (pp. 271–284).

    Google Scholar 

  • Hartley, R., & Zissermann, A. (2006). Multiple view geometry in computer vision. UK: Cambridge University Press.

    Google Scholar 

  • Heritage, G. L., & Large, A. R. G. (2009). Laser scanning for the environmental sciences (p. 302). Chichester, UK: Wiley.

    Book  Google Scholar 

  • Hirschmüller, H. (2005). Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR’05), (p. 8). San Diego, CA, USA, June 20–26, 2005.

    Google Scholar 

  • Hoffmann, C. M. (1989). Geometric and solid modeling: An introduction. San Francisco: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Hong, Y., He, X., Cerato, A., Zhang, K., Hong, Z., & Liao, Z. (2014). Predictability of a physically-based model for rainfall-induced Shallow Landslides: Model development and case studies. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 165–178). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11, 167–194.

    Article  Google Scholar 

  • Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., & Casagli, N. (2012). Design and implementation of a landslide early warning system. Engineering Geology, 147–148, 124–136.

    Article  Google Scholar 

  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: A review. Natural Hazards, 61, 1–24.

    Article  Google Scholar 

  • Jazayeri, I., & Fraser, C. S. (2010). Interest operators for feature-based matching in close range photogrammetry. The Photogrammetric Record, 25(129), 24–41.

    Article  Google Scholar 

  • Le Moigne, J., Netanyahu, N. S., & Eastman, R. D. (2011). Image registration for remote sensing (p. 484). UK: Cambridge University Press.

    Book  Google Scholar 

  • LePrince, S., Berthier, E., Ayoub, F., Delacourt, C., & Avouac, J. P. (2008). Monitoring earth surface dynamics with optical imagery. Eos Transactions, 89, 1–5.

    Article  Google Scholar 

  • Li, Z., & Grün, A. (2004). Automatic DSM generation from linear array imagery data. International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3), 128–133.

    Google Scholar 

  • Lindenbergh, R., Pfeifer, N. (2005). A statistical deformation analysis of two epochs of terrestrial laser data of a lock. In Proceedings of 7th Conference on ‘Optical 3-D Measurement Techniques’, (Vol. 2, pp. 61–70). Vienna, October 3–5, 2005.

    Google Scholar 

  • Lindenbergh, R. (2010). Chapter 7—Engineering applications. In G. Vosselman & H. G. Maas (Eds.), Airborne and terrestrial laser scanning (pp. 237–270). Boca Raton, FL, USA: Taylor and Francis Group.

    Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Luhmann, T. (2009). Precision potential of photogrammetric 6DOF pose estimation with a single camera. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3), 275–284.

    Article  Google Scholar 

  • Luhmann, T., Robson, S., Kyle, S., & Böhm, J. (2013). Close range photogrammetry: 3D imaging techniques (p. 702). Germany: Walter De Gruyter Inc.

    Google Scholar 

  • Maas, H. G. (1996). Automatic DEM generation by multi-image feature based matching. International Archives of Photogrammetry and Remote Sensing, 31(3), 484–489.

    Google Scholar 

  • Mantovani, F., Soeters, R., & van Westen, C. J. (1996). Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology, 15(2), 213–225.

    Article  Google Scholar 

  • Mazzanti, P., Brunetti, A., & Bretschneider, A. (2014). A new approach based on terrestrial remote sensing techniques for rock fall hazard assessment. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 69–87). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98, 284–303.

    Article  Google Scholar 

  • Monserrat, O., Moya, J., Luzi, G., Crosetto, M., Gili, J. A., & Corominas, J. (2013). Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain). Natural Hazards Earth System Science, 13, 1873–1877.

    Article  Google Scholar 

  • Motta, M., Gabrieli, F., Corsini, A., Manzi, V., Ronchetti, F., & Cola, S (2013). Landslide displacement monitoring from multi-temporal terrestrial digital images: Case of the Valoria Landslide site. In Margottini et al. (Eds.), Landslide science and practice (Vol. 2, pp. 73–78). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications. Applied Geomatics, 6(1), 1–15.

    Article  Google Scholar 

  • Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., & Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2–11.

    Article  Google Scholar 

  • Ohnishi, Y., Nishiyama, S., Yano, T., Matsuyama, H., & Amano, K. (2006). A study of the application of digital photogrammetry to slope monitoring systems. International Journal of Rock Mechanics and Mining Sciences, 43, 756–766.

    Article  Google Scholar 

  • Pears, N., Liu, Y., & Bunting, P. (2012). 3D Imaging, Analysis and Applications (p. 499). London: Springer.

    Google Scholar 

  • Pirotti, F., Guarnieri, A., & Vettore, A. (2013). State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface. European Journal of Remote Sensing, 46, 66–78.

    Article  Google Scholar 

  • Pirotti, F., Guarnieri, A., Masiero, A., Gregoretti, C., Degetto, M., & Vettore, A. (2014). Micro-scale landslide displacements detection using Bayesian methods applied to GNSS data. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 123–138). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Pomerleau, F., Colas, F., Siegwart, R., & Magnenat, S. (2013). Comparing ICP variants on real-world data sets. Autonomous Robots, 34(3), 133–148.

    Article  Google Scholar 

  • Previtali, M., Barazzetti, L., Scaioni, M., & Tian, Y. (2011). An automatic multi-image procedure for accurate 3D object reconstruction. In Proceedings of 4th International Congress on Image and Signal Processing (CISP), Shanghai (Vol. 3, pp. 1400–1404), October 15–17, 2011.

    Google Scholar 

  • Previtali, M., Barazzetti, L., & Scaioni, M. (2014). Accurate 3D surface measurement of mountain slopes through a fully automated imaged-based technique. Earth Science Informatics, 7(2), 109–122.

    Article  Google Scholar 

  • Qiao, G., Lu, P., Scaioni, M., Xu, S., Tong, X., Feng, T., Wu, H., Chen, W., Tian, Y., Wang, W., & Li, R. (2013). Landslide investigation with remote sensing and sensor network: From susceptibility mapping and scaled-down simulation towards in situ sensor network design. Remote Sensing, 5(9), 4319–4346. doi:10.3390/rs5094319.

  • Raguse, K., & Heipke, C. (2009). Synchronization of image sequences—a photogrammetric method. Photogrammetric Engineering and Remote Sensing, 75(4), 535–546.

    Article  Google Scholar 

  • Remondino, F., & Stoppa, D. (2013). TOF range-imaging cameras. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nez, F. (2014). State of the art in high density image matching. The Photogrammetric Record, 29(146), 144–166.

    Article  Google Scholar 

  • Roncella, R., Scaioni, M., & Forlani, G. (2004). Application of digital photogrammetry in geotechnics. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B/V), 93–98.

    Google Scholar 

  • Roncella, R., & Forlani, G. (2014). A fixed terrestrial photogrammetric system for landslide monitoring. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 43–67). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Roncella, R., Romeo, E., Barazzetti, L., Gianinetto, M., & Scaioni, M. (2012). Comparative analysis of digital image correlation techniques for in-plane displacement measurements. In Proceedings of 5 th International Congress on Image and Signal Processing (CISP) (pp. 721–726). Chongqing, P.R. China, October 16–18, 2012.

    Google Scholar 

  • Rosenfeld, A., & Kak, A. C. (1976). Digital picture processing (Vol. 1). Elsevier.

    Google Scholar 

  • Rosu, A. M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., & Klinger, Y. (2014). Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac. ISPRS Journal of Photogrammetry and Remote Sensing, doi:10.1016/j.isprsjprs.2014.03.002.

    Google Scholar 

  • Scaioni, M. (2013). Remote sensing for landslide investigations: From research into practice. Remote Sensing, 5(11), 5488–5492.

    Article  Google Scholar 

  • Scaioni, M., Roncella, R., & Alba, M. I. (2013a). Change detection and deformation analysis in point clouds: Application to rock face monitoring. Photogrammetric Engineering and Remote Sensing, 79(5), 441–456.

    Article  Google Scholar 

  • Scaioni, M., Lu, P., Chen, W., Qiao, G., Wu, H., & Feng, T., et al. (2013b). Analysis of spatial sensor network observations during landslide simulation experiments. European Journal of Environmental and Civil Engineering, 17(9), 802–825.

    Article  Google Scholar 

  • Scaioni, M., Tong, X., & Li, R. (2013c). Application of GLAS laser altimetry to detect elevation changes in East Antarctica. ISPRS Annals of The Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5/W2), 253–258.

    Google Scholar 

  • Scaioni, M., Feng, T., Barazzetti, L., Previtali, M., Lu, P., & Giao, G., et al. (2014a). Some applications of 2D and 3D photogrammetry during laboratory experiments for hydrogeological risk assessment. Geomatics, Natural Hazards and Risk, doi:10.1080/19475705.2014.885090.

    Google Scholar 

  • Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014b). Remote sensing for landslide investigations: An overview on recent achievements and perspectives. Remote Sensing, 6(10), 9600–9652. doi:10.3390/rs6109600.

  • Scaioni, M., Feng, T., Barazzetti, L., Previtali, M., & Roncella, R. (2014c). Image-based deformation measurement. Applied Geomatics, doi:10.1007/s12518-014-0152-x.

  • Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1–3), 7–42.

    Article  Google Scholar 

  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), New York (Vol. 1, pp. 519–526), June 17–22, 2006.

    Google Scholar 

  • Spencer, L., & Shah, M. (2004). Temporal synchronization from camera motion. In Proceedings of 6th Asian Conference on Computer Vision (Vol. 1, pp. 515–520). Jeju Island, Korea, January 27–30, 2004.

    Google Scholar 

  • Stumpf, A., Malet, J. P., Allemand, P., & Ulrich, P. (2014). Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 95, 1–12.

    Article  Google Scholar 

  • Tao, V., & Li, J. (2007). Advances in mobile mapping technology. ISPRS Book Series No. 4. London: Taylor & Francis Group.

    Google Scholar 

  • Teunissen, P. J. G. (2000). Testing theory: An introduction. Series on Mathematical geodesy and positioning. The Netherlands: Delft University Press.

    Google Scholar 

  • Tommaselli, A. M. G., Moraes, M. V. A., Silva, L. S. L., Rubio, M. F., Carvalho, G. J., & Tommaselli, J. T. G. (2014). Monitoring marginal erosion in hydroelectric reservoirs with terrestrial mobile laser scanner. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 589–596.

    Article  Google Scholar 

  • Toschi, I., Capra, A., De Luca, L., Beraldin, J. A., & Cournoyer, L. (2014). On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 371–378.

    Article  Google Scholar 

  • Travelletti, J., Delacourt, C., Allemand, P., Malet, J. P., Schmittbuhl, J., Toussaint, R., & Bastard, M. (2012). Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 39–55.

    Article  Google Scholar 

  • Wallis, R. (1976). An approach to the space variant restoration and enhancement of images. In Proceeding of Symposium on Current Mathematical Problems in Image Science, Naval Postgraduate School (pp. 329–340). Monterey, CA, USA. November 11–12, 1976.

    Google Scholar 

  • Wasowski, J., & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103–138.

    Article  Google Scholar 

  • Wiegand, C., Rutzinger, M., Heinrich, K., & Geitner, C. (2013). Automated extraction of shallow erosion areas based on multi-temporal ortho-imagery. Remote Sensing, 5, 2292–2307.

    Article  Google Scholar 

  • Wu, J., Gilliéron, P. Y., & Merminod, B. (2012). Cell-based automatic deformation computation by analyzing terrestrial LIDAR point clouds. Photogrammetric Engineering and Remote Sensing, 78, 317–329.

    Article  Google Scholar 

  • Wujanz, D., Krüger, D., & Neitzel, F. (2013a). Defo scan++: Surface based registration of terrestrial laser scans for deformation monitoring. In Proceedings of 2nd Joint International Symposium on Deformation Measurement (JISDM), Nottingham (p. 7), September 2–6, 2013.

    Google Scholar 

  • Wujanz, D., Neitzel, F., Hebel, H. P., Linke, J., & Busch, W. (2013b). Terrestrial radar and laser scanning for deformation monitoring: First steps towards assisted radar scanning. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5/W2), 325–330.

    Google Scholar 

  • Xue, Q., Zhang, M., Zhu, L., Cheng, X., Pei, Y., & Bi, J. (2014). Quantitative deformation analysis of landslides based on multi-period DEM data. In K. Sassa et al. (Eds.), Landslide science for a safer geoenvironment (Vol. 2, pp. 201–207). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Zhang, L. (2005). Automatic digital surface model (DSM) generation from linear array images. Ph.D dissertation, Mitteilungen Nr. 90 (p. 199). Institute of Geodesy and Photogrammetry, ETH Zurich.

    Google Scholar 

  • Zhao, H., Zhang, B., Wu, C., Zuo, Z., Chen, Z., & Bi, J. (2014). Direct georeferencing of oblique and vertical imagery in different coordinate systems. ISPRS Journal of Photogrammetry and Remote Sensing, 95, 122–133.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the 863 National High-tech R&D Program of China (No. 2012AA121302) and by the 973 National Basic Research Program of China (No. 2013CB733204). Also, this research was supported by the Italian Ministry of University and Research within the project FIRB—Futuro in Ricerca 2010 (No. RBFR10NM3Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Scaioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scaioni, M. et al. (2015). Close-Range Photogrammetric Techniques for Deformation Measurement: Applications to Landslides. In: Scaioni, M. (eds) Modern Technologies for Landslide Monitoring and Prediction. Springer Natural Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45931-7_2

Download citation

Publish with us

Policies and ethics