Skip to main content

An Overview of Arthropod Genomics, Mitogenomics, and the Evolutionary Origins of the Arthropod Proteome

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

Arthropods represent the largest majority of animal biodiversity and include organisms of economic interest and key model species. It is thus unsurprising that the genome of an arthropod, the fruit fly Drosophila melanogaster, was among the very first to be sequenced (Adams et al. 2000) and that to date, about 21 Drosophila genomes as well as a variety of other arthropod genomes have been sequenced. Despite this promising start, current sampling is biased towards economically relevant species, and a suitable close outgroup to the arthropods, which is necessary to polarise genomic studies, is still missing. Among the suitable outgroups to the Arthropoda, the Nematoda represent one of the largest components of the extant animal biomass, and their economic importance is comparable to that of the more biodiverse arthropods. As with the Arthropoda, the importance of the nematodes is reflected in the fact that the very first animal genome to be sequenced was that of the nematode Caenorhabditis elegans (The C. elegans genome consortium 1998). Despite the nematodes being phylogenetically close to the arthropods (Aguinaldo et al. 1997; Copley et al. 2004; Dopazo and Dopazo 2005; Philippe et al. 2005; Irimia et al. 2007; Roy and Irimia 2008; Dunn et al. 2008; Belinky et al. 2010; Hejnol et al. 2009; Holton and Pisani 2010), this group is composed of highly derived species, both genetically and morphologically. Accordingly, their genomes are unlikely to be of great utility in understanding arthropod genome evolution. Some genomic data (mostly in the form of transcriptomes) are now available for other smaller ecdysozoan phyla, and some genomes (Priapulida and Tardigrada) are on the horizon. Nonetheless, enough genomic information is now available for the Arthropoda (Table 3.1) to justify an investigation into the evolution of their genome. Such an analysis, however, is intimately dependent on the availability of a robust phylogenetic background, and to a lesser extent, robust divergence times for the nodes in the background phylogeny.

Table 3.1 The most important of the available Arthropod genomes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abascal F, Posada D, Knight RD, Zardoya R (2006) Parallel evolution of the genetic code in arthropod mitochondrial genomes. Plos Biol 4:e127. doi:10.1371/journal.pbio.0030127

    Article  PubMed  Google Scholar 

  • Abascal F, Posada D, Zardoya R (2007) MtArt: a new model of amino acid replacement for Arthropoda. Mol Biol Evol 24:1–5

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, rews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  PubMed  CAS  Google Scholar 

  • Belinky F, Cohen O, Huchon D (2010) Large-scale parsimony analysis of metazoan indels in protein-coding genes. Mol Biol Evol 27:441–451

    Article  PubMed  CAS  Google Scholar 

  • Bernt M, Braband A, Middendorf M, Misof B, Rota-Stabelli O, Stadler PF (2012) Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Molecular Phylogenetics and Evolution published on-line ahead of press. doi: 10.1016/j.ympev.2012.09.019 [to be replaced by volume: page range on publication]

  • Blanquart S, Lartillot N (2008) A site- and time-heterogeneous model of amino acid replacement. Mol Biol Evol 25:842–858

    Article  PubMed  CAS  Google Scholar 

  • Blythe MJ, Malla S, Everall R, Shih YH, Lemay V, Moreton J, Wilson R, Aboobaker AA (2012) High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. Plos One 7(3):e33784. doi:10.1371/journal.pone.0033784

    Article  PubMed  CAS  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed  CAS  Google Scholar 

  • Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668

    Article  PubMed  CAS  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    Article  PubMed  CAS  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Caceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong Q, Dusheyko S, Eads BD, Frohlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kultz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Rews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  PubMed  CAS  Google Scholar 

  • Copley RR, Aloy P, Russell RB, Telford MJ (2004) Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evol Dev 6:164–169

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  PubMed  CAS  Google Scholar 

  • Domazet-Loso T, Brajkovic J, Tautz D (2007) A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet 23:533–539

    Article  PubMed  CAS  Google Scholar 

  • Dopazo H, Dopazo J (2005) Genome-scale evidence of the nematode-arthropod clade. Genome Biol 6:R41. doi:10.1186/gb-2005-6-5-r41

    Article  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Ewen-Campen B, Shaner N, Panfilio KA, Suzuki Y, Roth S, Extavour CG (2011) The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics 12:61. doi:10.1186/1471-2164-12-61

    Article  PubMed  CAS  Google Scholar 

  • Foster PG (2004) Modeling compositional heterogeneity. Syst Biol 53:485–495

    Article  PubMed  Google Scholar 

  • Foster PG, Hickey DA (1999) Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 48:284–290

    Article  PubMed  CAS  Google Scholar 

  • Foster PG, Jermiin LS, Hickey DA (1997) Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 44:282–288

    Article  PubMed  CAS  Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  PubMed  CAS  Google Scholar 

  • Hartmann B, Castelo R, Blanchette M, Boue S, Rio DC, Valcarcel J (2009) Global analysis of alternative splicing regulation by insulin and wingless signalling in Drosophila cells. Genome Biol 10:R11. doi:10.1186/gb-2009-10-1-r11

    Article  PubMed  Google Scholar 

  • Hassanin A, Leger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, consequences for phylogenetic inferences. Syst Biol 54:277–298

    Article  PubMed  Google Scholar 

  • Hedin M, Starrett J, Akhter S, Schönhofer AL, Shultz JW (2012) Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. Plos One 7(8):e42888. doi:10.1371/journal.pone.0042888

    Article  PubMed  CAS  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of Bilaterian animals with scalable phylogenomic methods. Proc R Soc B 276:4261–4270

    Article  PubMed  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Pisani D (2010) Deep genomic-scale analyses of the metazoa reject Coelomata: evidence from single and multigene families analyzed under a supertree and supermatrix paradigm. Genome Biol Evol 2:310–324

    Article  PubMed  Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    Article  PubMed  CAS  Google Scholar 

  • Irimia M, Maeso I, Penny D, Garcia-Ferna`ndez J, Roy SW (2007) Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata. Mol Biol Evol 24:1604–1607

    Article  PubMed  CAS  Google Scholar 

  • Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubio JM, Ribeiro JM, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam M, Li HM, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguade M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA 107:12168–12173

    Article  PubMed  CAS  Google Scholar 

  • Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV, Boore JL, Brown WM (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol Biol Evol 17:813–824

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV, Brown WM, Boore JL (2004) Phylogenetic position of the Pentastomida and (pan)crustacean relationships. Proc Biol Sci 271:537–544

    Article  PubMed  Google Scholar 

  • Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kuck P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27:2451–2464

    Article  PubMed  CAS  Google Scholar 

  • Nabholz B, Ellegren H, Wolf JB (2012) High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes. Molecular Biology and Evolution published on line ahead of press. doi: 10.1093/molbev/mss238 [to be replaced by volume: page range on publication]

  • Negrisolo E, Minelli A, Valle G (2004) The mitochondrial genome of the house centipede Scutigera and the monophyly versus paraphyly of myriapods. Mol Biol Evol 21:770–780

    Article  PubMed  CAS  Google Scholar 

  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O’Leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005) Multi gene analyses of Bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    Article  PubMed  CAS  Google Scholar 

  • Pisani D (2004) Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst Biol 53:978–989

    Article  PubMed  Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1. doi:10.1186/1741-7007-2-1

    Article  PubMed  Google Scholar 

  • Podsiadlowski L, Braband A (2006) The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida). BMC Genomics 7:284

    Article  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Rendon-Anaya M, Delaye L, Possani LD, Herrera-Estrella A (2012) Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. Plos One 7:e43331. doi:10.1371/journal.pone.0043331

    Article  PubMed  CAS  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJ, Klingler M, Lorenzen M, Roth S, Schroder R, Tautz D, Zdobnov EM, Muzny D, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, Garner TT, Garnes J, Gnirke A, Hawes A, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Jackson L, Kovar C, Kowis A, Lee S, Lewis LR, Margolis J, Morgan M, Nazareth LV, Nguyen N, Okwuonu G, Parker D, Ruiz SJ, Santibanez J, Savard J, Scherer SE, Schneider B, Sodergren E, Vattahil S, Villasana D, White CS, Wright R, Park Y, Lord J, Oppert B, Brown S, Wang L, Weinstock G, Liu Y, Worley K, Elsik CG, Reese JT, Elhaik E, Landan G, Graur D, Arensburger P, Atkinson P, Beidler J, Demuth JP, Drury DW, Du YZ, Fujiwara H, Maselli V, Osanai M, Robertson HM, Tu Z, Wang JJ, Wang S, Song H, Zhang L, Werner D, Stanke M, Morgenstern B, Solovyev V, Kosarev P, Brown G, Chen HC, Ermolaeva O, Hlavina W, Kapustin Y et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  PubMed  CAS  Google Scholar 

  • Roeding F, Borner J, Kube M, Klages S, Reinhardt R, Burmester T (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 53:826–834

    Article  PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Telford MJ (2008) A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol Phylogenet Evol 48:103–111

    Article  PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Yang Z, Telford MJ (2009) MtZoa: a general mitochondrial amino acid substitutions model for animal evolutionary studies. Mol Phylogenet Evol 52:268–272

    Article  PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2:425–440

    Article  PubMed  Google Scholar 

  • Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B 278:298–306

    Article  PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Lartillot N, Philippe H, Pisani D (2012) Serine codon usage bias in deep phylogenomics: pancrustacean relationships as a case study. Systematic Biology. doi: 10.1093/sysbio/sys077 [to be replaced by volume: page range on publication]

  • Roy SW, Irimia M (2008) Rare genomic characters do not support Coelomata: intron loss/gain. Mol Biol Evol 25:620–623

    Article  PubMed  CAS  Google Scholar 

  • Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370

    Article  PubMed  CAS  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, Bouffard P, Caldera EJ, Cash E, Cavanaugh A, Denas O, Elhaik E, Fave MJ, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Harkins TT, Helmkampf M, Hu H, Johnson BR, Kim J, Moeller JA, Munoz-Torres MC, Murphy MC, Naughton MC, Nigam S, Overson R, Rajakumar R, Reese JT, Scott JJ, Smith CR, Tao S, Tsutsui ND, Viljakainen L, Wissler L, Yandell MD, Zimmer F, Taylor J, Slater SC, Clifton SW, Warren WC, Elsik CG, Smith CD, Weinstock GM, Gerardo NM, Currie CR (2011) The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. Plos Genet 7:e1002007. doi:10.1371/journal.pgen.1002007

    Article  PubMed  Google Scholar 

  • Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour 2:377–388

    Article  Google Scholar 

  • The C elegans genome consortium (1998) Genome sequence of the nematode C elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • The Heliconius genome consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98

    Google Scholar 

  • The honeybee genome consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  Google Scholar 

  • The pea aphid genome consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. Plos Biol 8:e1000313. doi:10.1371/journal.pbio.1000313

    Article  Google Scholar 

  • The silkworm genome consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Article  Google Scholar 

  • Thorley JL, Wilkinson M (1999) Testing the phylogenetic stability of early tetrapods. J Theor Biol 200:343–344

    Article  PubMed  Google Scholar 

  • Trewick SA (1998) Sympatric cryptic species in New Zealand Onychophora. Biol J Linn Soc 63:307–329

    Article  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

  • Zeng V, Villanueva KE, Ewen-Campen BS, Alwes F, Browne WE, Extavour CG (2011) De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics 12:581. doi:10.1186/1471-2164-12-581

    Article  PubMed  CAS  Google Scholar 

  • Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Alessandro Minelli for inviting us to contribute a chapter to this book and for the patience demonstrated during the editing process. DP and RC are supported by a Science Foundation Ireland Research Frontiers Programme (SFI-RFP) grant SFI-RFP 11/RFP/EOB/3106. ORS by a Marie Curie-Trento Province COFUND Fellowship. WAA by an IRCSET PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Pisani .

Editor information

Editors and Affiliations

Appendix: Methods for the Analyses Presented in this Chapter

Appendix: Methods for the Analyses Presented in this Chapter

3.1.1 A. Generation of the Onychophoran Transcriptome

Total RNA was extracted from three individuals of “Peripatoides novaezealandiae complex” (Trewick 1998), which were commercially purchased, using TriZol©. A transcriptome-wide cDNA library was generated and sequenced using two IlluminaHiseqII lanes at TrinSeq (Trinity College Dublin, Institute of Molecular Medicine, Genome Sequencing Laboratory) to an estimated coverage of <100, using 100-bp paired end reads. Row data were inspected for its quality and assembled using Abyss (Simpson et al. 2009) with k-mer of 45. This resulted in ~27,000 assembled transcripts (with lengths variable between ~70 and 1,750 base pairs). Approximately 17,000 of these transcripts had a significant blast hit against an annotated gene, while ~5,000 hit a known gene of unknown function. This set of ~22,000 genes was used to investigate the origin of orphan genes in Arthropoda. However, the 5,000 non-annotated genes were not considered for the Blast2go analysis (see below).

3.1.2 B. Mitogenomic Compositional Analyses

We downloaded a set of mitochondrial genomes of 90 arthropods in order to represent the whole phylum as homogenously as possible. Coding genes were extracted and processed with DAMBE (Xia and Xie 2001) to obtain composition for each codon position.

3.1.3 C. Phylogenetic Analyses

We investigated whether the low posterior probabilities observed for some nodes by Campbell et al. (2011) were caused by the presence of unstable taxa. We estimated leaf stability indices (Thorley and Wilkinson 1999) using P4 (Foster 2004) and performed Bayesian bootstrap analysis under CAT+G—the same model used by Campbell et al. (2011)—using the entire data set of Campbell et al. (2011). To perform the Bayesian bootstrap analyses, 100 bootstrapped data sets were generated starting from the alignment of Campbell et al. (2011). For each bootstrapped data set, a Bayesian analysis (2 independent runs) was performed under CAT+G (using Phylobayes; Lartillot et al. 2009). Results from each Bayesian analysis were summarised to generate a Bayesian majority rule consensus tree, and the resulting 100 trees were then summarised to generate a bootstrap majority rule consensus (results in Fig. 3.3).

3.1.3.1 Identification of Novel Gene Families

We downloaded the entire proteomes for the taxa in Fig. 3.4 and used MCL (Enright et al. 2002) to define protein families. A Perl script written by LC was used to partition these gene families with reference to their taxon coverage. This allowed the identification of protein families that are exclusive and universally distributed within each one of the clades in Fig. 3.4. These protein families must have been present in the clade’s last common ancestor (LCA) and must have been gained along the stem lineage of the considered clade. Because different genomes have different numbers of protein coding genes, the absolute numbers of newly acquired protein coding families for each internode can be misleading. We thus normalised numbers of orphan families by dividing these numbers by the total number of protein coding genes in the set of considered genomes (sum of the values in bold at the tips of Fig. 3.4). The normalised orphan counts (N-orph) can be interpreted as the fraction of some, abstract, pan-metazoan genome that was acquired at each internode of Fig. 3.4. Finally, we calculated rates of new orphan acquisition per million of years, dividing the N-orph values by the length of the internode along which the N-orph was acquired. As above, this allows the amount of orphan families gained each million year, along each internode in Fig. 3.4, to be expressed as proportions of a reference (abstract) “pan-metazoan” genome. The estimates of divergence times of Erwin et al. (2011) were used to calculate branch durations in million of years. For each internal node in our phylogeny, we also estimated (using squared parsimony—as implemented in Mesquite—http://mesquiteproject.org) the expected size of the genome of the corresponding LCA. This was done to allow evaluation of what proportion of each LCA genome was gained via new orphan family acquisition, along the corresponding stem lineage. Because squared parsimony is unlikely to be a particularly robust estimator of ancestral size, we suggest these numbers should be considered with caution, and only to represent a rough approximation of the true LCA-genomes dimensions.

Once the orphan gene families were identified for every internode of Fig. 3.4, BLAST2Go (www.blast2go.com) was used to obtain functional information for each of these families. For each protein family, the BLAST2Go analysis was performed for one protein family member only, and we assumed, by homology implication that all the other proteins in the same orphan family had the same (or similar) function.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pisani, D., Carton, R., Campbell, L.I., Akanni, W.A., Mulville, E., Rota-Stabelli, O. (2013). An Overview of Arthropod Genomics, Mitogenomics, and the Evolutionary Origins of the Arthropod Proteome. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_3

Download citation

Publish with us

Policies and ethics