Skip to main content

On Orbit Equivalence of Measure Preserving Actions

  • Chapter
Rigidity in Dynamics and Geometry

Abstract

We give a brief survey of some classification results on orbit equivalence of probability measure preserving actions of countable groups. The notion of ℓ2 Betti numbers for groups is gently introduced. An account of orbit equivalence invariance for ℓ2 Betti numbers is presented together with a description of the theory of equivalence relation actions on simplicial complexes. We relate orbit equivalence to a measure theoretic analogue of commensurability and quasi-isometry of groups: measure equivalence. Rather than a complete description of these subjects, a lot of examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Adams. Trees and amenable equivalence relations. Ergodic Theory Dynam. Systems, 10(1):1–14, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Adams and R. Spatzier. Kazhdan groups, cocycles and trees. Amer. J. Math., 112(2):271–287, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. In Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), pages 43-72. Astérisque, No. 32-33. Soc. Math. Prance, Paris, 1976.

    Google Scholar 

  4. A. Connes, J. Feldman, and B. Weiss. An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynam. Systems, 1(4):431–450 (1982), 1981.

    MathSciNet  Google Scholar 

  5. J. Cheeger and M. Gromov. L 2-cohomology and group cohomology. Topology, 25(2):189–215, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Connes. A survey of foliations and operator algebras. In Operator algebras and applications, Part I (Kingston, Ont., 1980), pages 521-628. Amer. Math. Soc, Providence, R.I., 1982.

    Google Scholar 

  7. H. Dye. On groups of measure preserving transformation. I. Amer. J. Math., 81:119–159, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Dye. On groups of measure preserving transformations. II. Amer. J. Math., 85:551–576, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Eckmann. Introduction to l 2-methods in topology: reduced l 2 -homology, harmonic chains, l 2-Betti numbers. Israel J. Math., 117:183–219, 2000. Notes prepared by Guido Mislin.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Feres. An introduction to Cocycle Super-Rigidity. In Rigidity in Dynamics and Geometry (Cambridge, UK, 2000). Springer-Verlag, 2002.

    Google Scholar 

  11. J. Feldman and C. Moore. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc., 234(2):289–324, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Feldman, C. Moore. Ergodic equivalence relations, cohomology, and von Neumann algebras. II. Trans. Amer. Math. Soc., 234(2):325–359, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Furman. Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. of Math. (2), 150(3):1059–1081, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Furman. Orbit equivalence rigidity. Ann. of Math. (2), 150(3):1083–1108, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Gaboriau. Mercuriale de groupes et de relations. C. R. Acad. Sci. Paris Sér. I Math., 326(2):219–222, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Gaboriau. Coût des relations d’équivalence et des groupes. Invent. Math., 139(1):41–98, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Gaboriau. Sur la (co-)homologie L 2 des actions préservant une mesure. C. R. Acad. Sci. Paris Sér. I Math., 330(5):365–370, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Gaboriau. Invariants ℓ2 de relations d’équivalence et de groupes. preprint.

    Google Scholar 

  19. S. Gefter and V. Golodets. Fundamental groups for ergodic actions and actions with unit fundamental groups. Publ. Res. Inst. Math. Sci., 24(6):821–847 (1989), 1988.

    Article  MathSciNet  Google Scholar 

  20. M. Gromov. Asymptotic invariants of infinite groups. In Geometrie group theory, Vol. 2 (Sussex, 1991), pages 1–295. Cambridge Univ. Press, Cambridge, 1993.

    Google Scholar 

  21. P. de la Harpe. Topics in geometric group theory. University of Chicago Press, Chicago, IL, 2000.

    Google Scholar 

  22. G. Levitt. On the cost of generating an equivalence relation. Ergodic Theory Dynam. Systems, 15(6):1173–1181, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-S. Li. Nonvanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math., 428:177–217, 1992.

    MathSciNet  MATH  Google Scholar 

  24. W. Lück. L 2-torsion and 3-manifolds. In Low-dimensional topology (Knoxville, TN, 1992), pages 75–107. Internat. Press, Cambridge, MA, 1994.

    Google Scholar 

  25. W. Lück. L 2-invariants of regular coverings of compact manifolds and CW-complexes to appear in “Handbook of Geometric topology”, Elsevier, 1998.

    Google Scholar 

  26. W. Lück. Dimension theory of arbitrary modules over finite von Neumann algebras and L 2-Betti numbers. I. Foundations. J. Reine Angew. Math., 495:135–162, 1998.

    MATH  Google Scholar 

  27. W. Lück. Dimension theory of arbitrary modules over finite von Neumann algebras and L 2-Betti numbers. II. Applications to Grothendieck groups, L 2-Euler characteristics and Burnside groups. J. Reine Angew. Math., 496:213–236, 1998.

    MATH  Google Scholar 

  28. W. Lück. L 2-Invariants and K-Theory. Mathematics-Monograph, Springer-Verlag, in preparation.

    Google Scholar 

  29. C. Moore. Ergodic theory and von Neumann algebras. In Operator algebras and applications, Part 2 (Kingston, Ont., 1980), pages 179-226. Amer. Math. Soc, Providence, R.I., 1982.

    Google Scholar 

  30. F. Murray and J. von Neumann. On rings of operators. Ann. of Math., II. Ser., 37:116–229, 1936.

    Article  Google Scholar 

  31. D. Ornstein and B. Weiss. Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Amer. Math. Soc. (N.S.), 2(1):161–164, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Schmidt. Some solved and unsolved problems concerning orbit equivalence of countable group actions. In Proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986), pages 171-184, Leipzig, 1987. Teubner.

    Google Scholar 

  33. R. Zimmer. Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Functional Analysis, 27(3):350–372, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Zimmer. Ergodic theory and semisimple groups. Birkhäuser Verlag, Basel, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaboriau, D. (2002). On Orbit Equivalence of Measure Preserving Actions. In: Burger, M., Iozzi, A. (eds) Rigidity in Dynamics and Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04743-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04743-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07751-7

  • Online ISBN: 978-3-662-04743-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics