Skip to main content

Control of Tundra Methane Emission by Microbial Oxidation

  • Chapter
Landscape Function and Disturbance in Arctic Tundra

Part of the book series: Ecological Studies ((ECOLSTUD,volume 120))

Abstract

The recent global increase of 1% per year in the concentration of atmospheric methane (CH4) is well documented (Rasmussen and Khalil 1984; Steele et al. 1987; Blake and Rowland 1989). This increase causes concern because CH4 is an important trace gas in the earth’s atmosphere. Greenhouse warming from CH4 is 25% of CO2-induced warming, and together these gases account for 75% of the radiative trapping from atmospheric gases (Rodhe 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348: 711–714

    Article  CAS  Google Scholar 

  • Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190

    Article  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies: their net primary productivity seasonality and possible methane emissions. J Atmos Chem 8: 307–358

    Article  CAS  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology biochemistry and specific inhibitors of CH4, NH4+ and CO oxidation by methylotrophs and nitrifiers. Microbiol Rev 53: 68–84

    CAS  Google Scholar 

  • Billings WD (1987) Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quat Sci Rev 6: 165–177

    Google Scholar 

  • Blake DR, Rowland FS (1989) Continuing worldwide increase in tropospheric methane, 19781987. Science 239: 1129–1131

    Article  Google Scholar 

  • Bliss LC (1975) Devon Island. In: Rosswall T, Heal OW (eds) Structure and function of tundra ecosystems. Swed Natl Res Counc, Stockholm. Ecol Bull 20: 17–60

    Google Scholar 

  • Bliss LC, Heal OW, Moore JJ (1981) Tundra ecosystems: a comparative analysis. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Broecker WS, Peng T-H (1974) Gas exchange rates between air and sea. Tellus 26: 21–35

    Article  CAS  Google Scholar 

  • Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (1992) Arctic ecosystems in a changing climate. Academic Press, San Diego

    Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2: 299–327

    Article  CAS  Google Scholar 

  • Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86: 7203–7209

    Article  CAS  Google Scholar 

  • Clymo RS (1983) Peat. In: Gore AJP (ed) Mires: swamp, bog, fen and moor. Elsevier, New York, pp 159–224

    Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Mazdar L, Sanner W (1988) Methane flux from Minnesota peatlands. Global Biogeochem Cycles 3: 371–384

    Article  Google Scholar 

  • Farrish KW, Grigal DF (1988) Decomposition in an ombrotrophic bog and a minerotrophic fen in Minnesota. Soil Sci 145: 353–358

    Article  Google Scholar 

  • Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment ( Lake Constance ). FEMS Microbiol Ecol 73: 149–158

    Google Scholar 

  • Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96: 13,033–13, 065

    Google Scholar 

  • Gorham E (1991) The role of subarctic and boreal peatlands in the global carbon cycle and their probable responses to “greenhouse” climate warming. Ecol Appl 1: 182–195

    Article  Google Scholar 

  • Grotch SL (1988) Regional intercomparison of general circulation models, predictions and historical climate data. US Dept Energy (DOE/NBB-0084 TR 041), Washington DC

    Google Scholar 

  • Hanson RS (1980) Ecology and diversity of methylotrophic organisms. Adv Appl Microbiol 26: 3–39

    Article  CAS  Google Scholar 

  • Hesslein RH (1976) An in situ sampler for close-interval interstitial water studies. Limnol Oceanogr 21: 912–914

    Article  CAS  Google Scholar 

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19: 95–110

    Article  Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO, emissions from soils in response to global warming. Nature 351: 304–306

    Article  CAS  Google Scholar 

  • Jφrgensen L, Degn H (1983) Mass spectrometric measurements of methane and oxygen utilization by methanotrophic bacteria. FEMS Microbiol Ecol 20: 331–335

    Article  Google Scholar 

  • Khalil MAK, Rasmussen RA (1989) Climate-induced feedbacks for global cycles of methane and nitrous oxide. Tellus 41 (B): 554–559

    Google Scholar 

  • King GM (1990) Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol Ecol 74: 309–324

    CAS  Google Scholar 

  • King GM, Roslev P, Skovgaard H (1990) Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl Environ Microbiol 56: 2902–2911

    CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251: 298–301

    Article  CAS  Google Scholar 

  • Kuivila KM, Murray JW, Devol AH, Lidstrom ME, Reimers CE (1988) Methane cycling in the sediments of Lake Washington. Limnol Oceanogr 33: 571–581

    Article  CAS  Google Scholar 

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan arctic. Science 234: 689–696

    Article  CAS  Google Scholar 

  • Lashof DA (1989) The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Clim Change 14: 213–242

    Article  CAS  Google Scholar 

  • Lidstrom ME, Somers L (1984) Seasonal studies of methane oxidation in Lake Washington. Appl Environ Microbiol 47: 1255–1260

    CAS  Google Scholar 

  • Matson PA, Vitousek PM, Schimel DS (1989) Regional extrapolation of trace gas flux based on soils and ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 97–108

    Google Scholar 

  • Matthews E, Fung 1(1987) Methane emission from natural wetlands: global distribution area and environmental characteristics of sources. Global Biogeochem Cycles 1: 61–86

    Google Scholar 

  • Mitchell JFB (1989) The greenhouse effect and climate. Rev Geophys 27: 115–139

    Article  Google Scholar 

  • Mooney HS, Vitousek PM, Matson PA (1987) Exchange of material between terrestrial ecosystems and the atmosphere. Science 238: 926–932

    Article  CAS  Google Scholar 

  • Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69: 33–38

    Article  CAS  Google Scholar 

  • Moore TR, Roulet N, Knowles R (1990) Spatial and temporal variations of methane flux from subarctic/northern boreal forest fens. Global Biogeochem Cycles 4: 29–46

    Article  CAS  Google Scholar 

  • Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 641–706

    Google Scholar 

  • Post WM (1990) Report of a workshop on climate feedbacks and the role of peatlands, tundra and boreal ecosystems in the global carbon cycle. Oak Ridge National Laboratory (ORNL/TM11457), Oak Ridge, Tennessee

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159

    Article  CAS  Google Scholar 

  • Rasmussen RA, Khalil MAK (1984) Atmospheric methane in recent and ancient atmospheres: concentrations, trends and the interhemispheric gradient. J Geophys Res 89(D7): 1159911605

    Google Scholar 

  • Reeburgh WS, Whalen SC (1992) High latitude ecosystems as CH, sources. Ecol Bull (Copenhagen) 42: 62–70

    CAS  Google Scholar 

  • Remsen CC, Minnich EH, Stephens RS, Buchholz L, Lidstrom ME (1989) Methane oxidation in Lake Superior sediments. J Great Lakes Res 15: 141–146

    Article  CAS  Google Scholar 

  • Revsbech NP, Ward DM (1983) Oxygen microelectrode that is insensitive to medium composition: use in an acid microbial mat dominated by Cyanidium calderium. Appl Environ Microbiol 45: 755–759

    CAS  Google Scholar 

  • Rieger S (1975) Arctic soils. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 749–769

    Google Scholar 

  • Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse effect. Science 248: 1217–1219

    Article  CAS  Google Scholar 

  • Schumacher MM (1983) Landfill methane recovery. Noyes Data Corp, Park Ridge, New Jersey Sebacher DI, Harriss RC, Bartlett KB (1985) Methane emission to the atmosphere through aquatic plants. J Environ Qual 14: 40–46

    Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB, Sebacher SM, Grice SS (1986) Atmospheric methane sources: Alaskan tundra, an alpine fen and a subarctic boreal marsh. Tellus 38 (B): 1–10

    Google Scholar 

  • Seiler W, Holzapfel-Pschorn A, Conrad R, Scharfee D (1984) Methane emission from rice paddies. J Atmos Chem 1: 241–268

    Article  CAS  Google Scholar 

  • Steele LP, Fraser PJ, Rasmussen RA, Khalil MAK, Conway TJ, Crawford AJ, Gammon RH, Masarie KA, Thoning KW (1987) The global distribution of methane in the troposphere. J Atmos Chem 5: 125–171

    Article  CAS  Google Scholar 

  • Tenhunen JD, Gillespie CT, Oberbauer SF, Sala A, Whalen SC (1995) Climate effects on the carbon balance of tussock tundra in the Philip Smith Mountains, Alaska. Flora 190: 273–283

    Google Scholar 

  • Tieszen LL (1978) Vegetation and production ecology of an Alaskan arctic tundra. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Topp E, Hanson RS (1991) Metabolism of radiatively important trace gases by methane-oxidizing bacteria. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. Am Soc Microbiol, Washington DC, PP 71–90

    Google Scholar 

  • Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (1986) Forest ecosystems in the Alaskan taiga. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Whalen SC, Reeburgh WS (1988) A methane flux time series for tundra environment. Global Biogeochem Cycles 2: 399–409

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1990a) A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42 (B): 237–249

    Article  Google Scholar 

  • Whalen SC, Reeburgh WS (1990b) Consumption of atmospheric methane by tundra soils. Nature 346: 160–162

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1992) Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochem Cycles 6: 139–152

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56: 3405–3411

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Kizer KS (1991) Methane consumption and emission by taiga. Global Biogeochem Cycles 5: 261–273

    Article  CAS  Google Scholar 

  • Wigley TML, Raper SCB (1990) Natural variability of the climate system and detection of the greenhouse effect. Nature 344: 324–327

    Article  Google Scholar 

  • Williams RT, Crawford RL (1983) Microbial diversity in Minnesota peatlands. Microbiol Ecol 9: 201–214

    Article  CAS  Google Scholar 

  • Yavitt JB, Lang GE, Downey DM (1988) Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States. Global Biogeochem Cycles 2: 253–268

    Google Scholar 

  • Yavitt JB, Downey DM, Lang GE, Sexstone AJ (1990) Methane consumption in two temperate forest soils. Biogeochemistry 9: 39–52

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whalen, S.C., Reeburgh, W.S., Reimers, C.E. (1996). Control of Tundra Methane Emission by Microbial Oxidation. In: Reynolds, J.F., Tenhunen, J.D. (eds) Landscape Function and Disturbance in Arctic Tundra. Ecological Studies, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01145-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01145-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01147-8

  • Online ISBN: 978-3-662-01145-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics