Skip to main content

Tidal Friction Parameters from Satellite Observations

  • Conference paper
Tidal Friction and the Earth’s Rotation II

Abstract

Mutual differential gravitational attraction between two close bodies gives rise to the well-known tidal deformations, which are generally small compared to the dimensions of the interacting bodies. Repeating configurations make these deformations periodic. However, since the deformations are never perfectly elastic, energy is dissipated, causing irreversible evolution processes such as orbits and spin secular changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accad Y, Pekeris CL (1978) Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Philos Trans R Soc London 290: 235–266

    Article  Google Scholar 

  • Calame O, Mulholland D (1978) Lunar tidal acceleration determined from laser range measures. Science 199: 977–978

    Article  Google Scholar 

  • Cappallo RJ, Counselman CC III, King RW, Shapiro II (1981) Tidal dissipation in the Moon. J Geophys Res 86: 7180–7184

    Article  Google Scholar 

  • Cazenave A, Daillet S (1981) Lunar tidal acceleration from Earth satellite orbit analyses. J Geophys Res 86: 1659–1663

    Article  Google Scholar 

  • Cheng CH, Toksoz MN (1978) Tidal stresses in the Moon. J Geophys Res 83: 845–853

    Article  Google Scholar 

  • Felsentregger TL, Marsh J, Williamson RG (1978) M2 ocean tide parameters and the deceleration of the Moon’s mean longitude from satellite orbit data. NASA Tech Mem 79571

    Google Scholar 

  • Ferrari AJ, Sinclair WS, Sjogren WL, Williams JG, Yoder CF (1980) Geophysical parameters of the Earth-Moon system. J Geophys Res 85: 3939–3951

    Article  Google Scholar 

  • Goad C, Douglas B (1978) Lunar tidal acceleration obtained from satellite derived ocean tide parameters. J Geophys Res 83: 2306–2310

    Article  Google Scholar 

  • Lambeck K (1975) Effects of tidal dissipation in the oceans on the Moon’s orbit and the Earth’s rotation. J Geophys Res 80: 2917–2925

    Article  Google Scholar 

  • Lambeck K (1977) Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. Philos Trans R Soc London Ser A 287 (1347): 545–594

    Article  Google Scholar 

  • Lambeck K, Cazenave A, Balmino G (1974) Solid earth and ocean tides estimated from satellite orbit analyses. Rev Geophys Space Phys 12 (3): 421–433

    Article  Google Scholar 

  • Mulholland D (1980) Scientific achievements from ten years of lunar laser ranging. Rev Geophys Space Phys 18: 549–563

    Article  Google Scholar 

  • Parke ME (1978) Open ocean tide modelling, in the Proc of the 9th GEOP conference. OHIO State Univ, Columbus, OHIO

    Google Scholar 

  • Parke ME (1979) Global ocean tide modelling, paper presented at the Tidal Interact Symp. 17th Gen Assembly IUGG, Canberra, Aust

    Google Scholar 

  • Parke ME, Hendershott MC (1980) M2, S2, K1, models of the global ocean tide on an elastic earth. Mar Geoa 3: 379–408

    Article  Google Scholar 

  • Schwiderski EW (1979) Detailed ocean tide models of M2, S2, K1 and 01, Paper presented at the Tidal Interact Symp. 17th Gen Assembly IUGG, Canberra, Aust

    Google Scholar 

  • Toksöz MN, Dainty AM, Solomon SC, Anderson KR (1974) Structure of the Moon. Rev Geophys Space Phys 12: 539–567

    Article  Google Scholar 

  • Williams JG, Sinclair WS, Yoder CF (1978) Tidal acceleration of the Moon. Geophys Res Lett 5 (11): 943–946

    Article  Google Scholar 

  • Yoder CF (1979) Effects of the Spin-spin interaction and the inelastic tidal deformation on the lunar physical librations. In: Nacozy PE, Ferraz-Mello SS (eds) Natural and artificial satellite motion. Texas Univ Press

    Google Scholar 

  • Yoder CF, Sinclair WS, Williams JG (1978) The effect of dissipation in the Moon on the lunar physical librations. Lunar Sci 9: 1291

    Google Scholar 

  • Zschau J (1979) Tidal friction in the solid earth: loading tides versus body tides. In: Brosche P, SĂ¼ndermann J (eds) Tidal friction and the Earth’s rotation. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cazenave, A. (1982). Tidal Friction Parameters from Satellite Observations. In: Brosche, P., SĂ¼ndermann, J. (eds) Tidal Friction and the Earth’s Rotation II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68836-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68836-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12011-7

  • Online ISBN: 978-3-642-68836-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics