Skip to main content

Amphibian Lateral Line Receptors

  • Chapter
Frog Neurobiology

Abstract

The lateral line is a collection of sense organs which are distributed over the skin or in sub-epidermal canals of the head and body of aquatic lower vertebrates. They are found in cyclostomes, fishes, larval amphibians, aquatic adult urodele amphibians and some aquatic anurans including the South African clawed toad, Xenopus laevis. In frogs, as in all anuran amphibians, in which the adults have a mainly terrestrial existence, the lateral line system which is present in the larvae, is lost at metamorphosis. Therefore, if this review was concerned only with the lateral line system of the frog, as it strictly ought to be, there would be little to write about. Instead the review has been expanded and deals with the lateral line system of amphibians. Where no information exists about a particular aspect of the amphibian lateral line system, then where possible, this information has been drawn from studies on the very similar lateral line system of fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A.E.: Observations on the effects of an anterior-pituitary extract (phyone) on the “red phase” of Triturus viridescens. Anat. Rec. 52 (Suppl.) pp. 46 (1932).

    Google Scholar 

  • Alnaes, E.: Lateral line input to the crista cerebellaris in the eel. Field potentials and histology. Acta physiol. scand. 88, 49–61 (1973 a).

    PubMed  CAS  Google Scholar 

  • Alnaes, E.: Unit activity of ganglionic and medullary second order neurones in the eel lateral line system. Acta physiol. scand. 88, 160–174 (1973 b).

    PubMed  CAS  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    CAS  Google Scholar 

  • Bergeijk, van W. A.: Introductory comments on lateral line function. In: Lateral Line Detectors (P. Cahn, ed.), p. 73–81. Bloomington: Indiana Univ. Press.

    Google Scholar 

  • Bone, Q.: On the scabbard fish Acanopus carbo. J. Mar. Biol. Ass. U.K. 51, 219–226 (1971).

    Google Scholar 

  • Boord, R.L., Eisworth, L.M.: The central terminal fields of posterior lateral line and eighth nerves of Xenopus. Amer. Zool. 12 (1972).

    Google Scholar 

  • Borg, E.: Acoustic middle ear reflexes: A sensory-control system. Acta oto-laryng. (Stockh.), (Suppl.) 304, 1–34 (1972).

    CAS  Google Scholar 

  • Breder, C.M.: Vortices and fish schools. Zoologica 50, 97–114 (1965).

    Google Scholar 

  • Cahn, P.: Lateral Line Detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Cajal, R.S.: Histologie du Systeme Nerveux de l’Homme et des Vertebres. Paris: Maloine 1909–1911.

    Google Scholar 

  • Calabresi, E.: A proposito di speciali appendici sensoriali presenti nella pelle di Xenopus laevis (Daudin). Monitor. Zool. Ital. 35, 90–102 (1924).

    Google Scholar 

  • Campbell, D., Boord, R.L.: Central auditory pathways of nonmammalian vertebrates. In: Handbook of Sensory Physiology, vol. V/1, Auditory System, Anatomy, Physiology (Ear), (WD. Keidel, W.D. Neff, eds.), p. 337–362. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Chezar, H.H.: Studies on the lateral-line system of Amphibia II, Comparative cytology and innervation of the Urodela. J. comp. Neurol. 50, 159–175 (1930).

    Google Scholar 

  • Curtis, D.R., Duggan, A.W., Felix, D., Johnston, G.A.R.: GABA, biculline and central inhibition. Nature (Lond.) 226, 1222–1224 (1970).

    CAS  Google Scholar 

  • Davis, H.: A model for transducer action in the cochlea. In: Sensory receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 181–190 (1965).

    CAS  Google Scholar 

  • Dawson, A.B.: Changes in the lateral line organs during the life of the newt, Triturus viridescens. A consideration of the endocrine factors involved in the maintenance of differentiation. J. exp. Zool. 74, 221–237 (1936).

    Google Scholar 

  • Desmedt, J.E., Monaco, P.: The pharmacology of a centrifugal inhibitory pathway in the cat’s acoustic system. Proc. Intern. Pharmacol. Meet. 1st, Stockh. 8, 183–188 (1961).

    Google Scholar 

  • Dewson, J.H. III: Efferent olivo cochlear bundle: some relationships to stimulus discrimination in noise. J. Neurophysiol. 31, 122–130 (1968).

    PubMed  Google Scholar 

  • Diamond, J.: The Mauthner Cell. In: Fish Physiology, vol. V, p. 265–346 (W.S. Hoar and D.J. Randall, eds.). New York: Academic Press 1971.

    Google Scholar 

  • Dijkgraaf, S.: Untersuchungen über die Funktion der Seitenorgane an Fischen. Z. vergl. Physiol. 20, 162–214 (1934).

    Google Scholar 

  • Dijkgraaf, S.: Berichtigung und Ergänzung zu meiner Arbeit ”Untersuchungen über den Temperatursinn der Fische“. Z. vergl. Physiol. 30, 252 (1943).

    Google Scholar 

  • Dijkgraaf, S.: Electrophysiologische Untersuchungen an der Seitenlinie von Xenopus laevis. Experientia (Basel) 12, 276–278 (1956).

    CAS  Google Scholar 

  • Dijkgraaf, S.: The functioning and significance of the lateral-line organs. Biol. Rev. 38, 51–105 (1963).

    PubMed  CAS  Google Scholar 

  • Dijkgraaf, S.: Biological significance of the lateral line organs. In: Lateral Line Detectors, p. 83–96 (P. Cahn, ed.). Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Dijkgraaf, S.: Über die Reizung des Ferntastsinnes bei Fischen und Amphibian. Experientia (Basel) 3, 206–208 (1974).

    Google Scholar 

  • Eccles, J.C.: The Physiology of Synapses. Berlin: Springer-Verlag, 1964.

    Google Scholar 

  • Edwards, C., Ottoson, D.: The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J. Physiol. (Lond.) 143, 138–148 (1958).

    CAS  Google Scholar 

  • Enger, P.S.: Acoustic threshold in goldfish and its relation to the sound source distance. Comp. Biochem. Physiol. 18, 859–868 (1966).

    PubMed  CAS  Google Scholar 

  • Enger, P.S.: Hearing in fish. In: Hearing Mechanism in Vertebrates, p. 4–10 (A.V.S. de Reuck and J. Knight, eds.). London: J.A. Churchill 1968.

    Google Scholar 

  • Engström, H., Wersäll, J.: Structure and innervation of the inner ear sensory epithelia. Int. Rev. Cytol. 7, 535–585 (1958).

    Google Scholar 

  • Fex, J.: Auditory activity and centripetal cochlea fibres of the cat. Acta physiol. scand., Suppl. 189 (1962).

    Google Scholar 

  • Fex, J.: Efferent inhibition in the cochlea related to hair cell D.C. activity study of postsynaptic activity of the crossed olivo cochlear fibres in the cat. J. acoust. Soc. Amer. 41, 606–675 (1967).

    Google Scholar 

  • Fex, J.: Neuropharmacology and potentials of the inner ear. In: Basic Mechanisms in Hearing, p. 377–422 (A.R. Møller, ed.). New York: Academic Press 1973.

    Google Scholar 

  • Flock, Å.: Electromicroscopical and electrophysiological studies on the lateral line canal organ. Acta oto-laryngol. (Stockh.), Suppl. 199, 1–90 (1965).

    Google Scholar 

  • Flock, Å.: Ultrastructure and function in the lateral line organs. In: Lateral Line Detectors, p. 163–197 (P. Cahn, ed.). Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Flock, Å.: The lateral line organ mechanoreceptors. In: Fish Physiology, vol. 5, p. 241–264 (W.S. Hoar and D.J. Randall, eds.). New York and London: Academic Press 1971a.

    Google Scholar 

  • Flock, Å.: Sensory transduction in hair cells. In: Handbook of Sensory Physiology, vol. 1, p. 396–441 (W. Lowenstein, ed.). Berlin-Heidelberg-New York: Springer 1971b.

    Google Scholar 

  • Flock, Å., Flock, B.: Ultrastructure of the amphibian papilla in the bullfrog. J. acoust. Soc. Amer. 40, 1262 (1966).

    Google Scholar 

  • Flock, Å., Jørgensen, J.M.: The ultrastructure of lateral line sense organs in the Juvenile Salamander Ambystoma mexicanum. Z. Zellforsch. (in press) (1975a).

    Google Scholar 

  • Flock, Å., Jørgensen, J.M.: The development of lateral line organs in the regenerating tail of the salamander Ambystoma mexicanum. In preparation (1975 b).

    Google Scholar 

  • Flock, Å., Jørgensen, J.M., Russell, I.J.: The Physiology of individual hair cells and their synapses. In: Basic Mechanisms in Hearing, p. 273–306 (A. Moller, ed.). New York: Academic Press 1973.

    Google Scholar 

  • Flock, Å., Jørgensen, J.M., Russell, I.J.: Electrophysiology of lateral line organs in the salamander Ambystoma mexicanum. In preparation (1976).

    Google Scholar 

  • Flock, Å., Lam, D.M.K.: Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature (Lond.) 249, 142–144 (1974).

    CAS  Google Scholar 

  • Flock, Å., Russell, I.J.: Efferent fibres: postsynaptic action on hair cells. Nature (Lond.), New Biol. 243, 89–91 (1973a).

    CAS  Google Scholar 

  • Flock, Å., Russell, I.J.: The postsynaptic action of efferent fibres in the lateral line organ of the burbot Lota lota. J. Physiol. (Lond.) 235, 591–605 (1973 b).

    CAS  Google Scholar 

  • Flock, Å., Russell, I.J.: Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota Lota J. Physiol. (Lond.), in press (1976).

    Google Scholar 

  • Flock, Å., Wersäll, J.: A study of the orientation of the sensory hairs of the receptor cells in the lateral line organs of fish, with special reference to the function of the receptors. J. Cell Biol. 15, 19 (1962).

    PubMed  CAS  Google Scholar 

  • Frischkopf, L.S., Oman, C.M.: Structure and motion of cupulae of lateral line organs in Necturus maculosus: II. Observations of cupula structure. Quart. Res. Rep. No. 104 Res. Lab. of Electron. M.I.T., p. 330–331 (1972).

    Google Scholar 

  • Furukawa, T.: Synaptic interaction at the Mauthner cell of goldfish. Progr. Brain Res. 21A, 46–70 (1966).

    Google Scholar 

  • Furukawa, T., Ishii, Y., Matsuura, S.: Synaptic delay and time course of postsynaptic potentials at the junction between hair cells and eighth nerve fibres in the goldfish. Jap. J. Physiol. 22, 617–635 (1972).

    CAS  Google Scholar 

  • Galindo, A.: GABA-picrotixin interaction in the mammalian central nervous system. Brain Res. 14, 763–767 (1969).

    PubMed  CAS  Google Scholar 

  • Galley, N., Klinke, R., Oertel, W., Pause, M., Storch, W.H.: The effect of intracochlearly administered acetylcho-line-blocking agents on the efferent synapses of the cochlea. Brain Res. 64, 55–63 (1973).

    PubMed  CAS  Google Scholar 

  • Gertychowa, R.: Studies on the ethology and space orientation of the blind cave fish Anoptichthys jordani Hubbs et Innes 1936 (Characidae). Folia Biol. (Krakow) 18, 4–69 (1970).

    Google Scholar 

  • Görner, P.: Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans des Krallenfrosches (Xenopus laevis Daudin). Z. vergl. Physiol. 47, 316–338 (1963).

    Google Scholar 

  • Görner, P.: Independence of afferent activity from efferent activity in the lateral line organ of Xenopus laevis Daudin. In: Lateral Line Detectors, p. 199–214 (P. Cahn, ed.). Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Görner, P.: The importance of the lateral line system for the perception of surface waves in the claw toad, Xenopus laevis, Daudin. Experientia (Basel) 29, 295–296 (1973).

    Google Scholar 

  • Haldeman, S., McLennan, H.: The antagonistic action of glutamic acid diethylester towards amino acid-induced and synaptic excitation of central neurones. Brain Res. 45, 393–400 (1972).

    PubMed  CAS  Google Scholar 

  • Halliday, T.: The profligate private life of the newt. New Scientist 62, 14–15 (1974).

    Google Scholar 

  • Harris, G.G., Bergeijk, W.A., van: Evidence that the lateral line organ responds to water displacements. J. acoust. Soc. Amer. 34, 1831–1841 (1962).

    Google Scholar 

  • Harris, G.G., Flock, Å.: Spontaneous and evoked activity from the Xenopus laevis lateral line. In: Lateral Line Detectors, p. 135–161 (P. Cahn, ed.). Bloomington: Indiana University Press 1967.

    Google Scholar 

  • Harris, G.G., Frischkopf, L.S., Flock, Å.: Receptor potentials from hair cells of the lateral line. Science 167, 76–79 (1970).

    PubMed  CAS  Google Scholar 

  • Harris, G.G., Milne, D.C.: Input-output characteristics of the lateral line sense organ. J. acoust. Soc. Amer. 40, 32–42 (1966).

    CAS  Google Scholar 

  • Harrison, R.G.: Experimentelle Untersuchungen über die Entwicklung der Sinnesorgane der Seitenlinie bei den Amphibien. Arch. mikr. Anat. Entw. 3 (1904).

    Google Scholar 

  • Hashimoto, T., Katsuki, Y., Yanagisawa, K.: Efferent system of lateral line organ of fish. Comp. Biochem. Physiol. 33, 405–421 (1970).

    PubMed  CAS  Google Scholar 

  • Henson, O.W.: The activity and function of the middle ear muscles in echo locating bats. J. Physiol. (Lond.) 180, 871–887 (1965).

    Google Scholar 

  • Hillman, D.E.: Observations on morphological features and mechanical properties of the peripheral vestibular receptor system in the frog. In: Basic Aspects of Central Vestibular Mechanisms, p. 69–78 (A. Brodel and O. Pompeiano, eds.). Amsterdam: Elsevier Publ. Co. 1972.

    Google Scholar 

  • Ishii, Y., Matsuura, S., Furukawa, T.: An input-output relation at the synapse between hair cells and eighth nerve fibres in goldfish. Jap. J. Physiol. 21, 91–98 (1971).

    CAS  Google Scholar 

  • Iwai, T.: Structure and development of lateral line cupulae in teleost larvae. In: Lateral Line Detectors, p. 27–44 (P. Cahn, ed.). Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Jande, S.S.: Fine structure of lateral line organs of frog tadpoles. J. Ultrastruct. Res. 15, 496–509 (1966).

    PubMed  CAS  Google Scholar 

  • Jierlof, R., Spoor, A., Vries, H. de: The microphonic activity of the lateral line. J. Physiol. (Lond.) 116, 137–157 (1952).

    Google Scholar 

  • Johnstone, B.M., Sellick, P.M.: The peripheral auditory apparatus. Quart. Rev. Biophys. 5, 1–57 (1972).

    CAS  Google Scholar 

  • Johnstone, J.R., Johnstone, B.M.: Origin of summating potential. J. acoust. Soc. Amer. 40, 1405–1413 (1966).

    CAS  Google Scholar 

  • Jørgensen, J.M., Flock, Å.: The ultrastructure of lateral line sense organs in the adult salamander Ambystoma mexicanum. J. Neurocytol. 2, 133–142 (1973).

    PubMed  Google Scholar 

  • Jørgensen, J.M., Flock, Å.: Development of non-innervated lateral line organs in the salamander Ambystoma mexicanum. In preparation (1975).

    Google Scholar 

  • Katz, B.: Action potential from a sensory ending. J. Physiol. (Lond.) 777, 248–260 (1950).

    Google Scholar 

  • Klinke, R., Galley, N.: Efferent Innervation of vestibular and auditory receptors. Physiol. Rev. 54, 316–357 (1974).

    PubMed  CAS  Google Scholar 

  • Konishi, T.: Action of tubocurarine and atropine on the crossed olivocochlear bundle. Acta oto-laryng. (Stockh.) 74, 252–264 (1972).

    CAS  Google Scholar 

  • Kramer, G.: Untersuchungen über die Sinnesleistungen und das Orientierungsverhalten von Xenopus laevis (Daud.), Zool. Jb. Physiol. 52, 629–676 (1933).

    Google Scholar 

  • Kuiper, J.W.: The microphonic effect of the lateral line organ. Thesis, Univ. Gröningen (1956).

    Google Scholar 

  • Larimer, J.L., Kennedy, D.: Visceral afferent signals in the crayfish stomatogastric ganglion. J. exp. Biol. 44, 345–354 (1966).

    PubMed  CAS  Google Scholar 

  • Larsell, O.: The development of the cerebellum in the frog (Hyla regilla) in relation to the vestibular and lateral line systems. J. comp. Neurol. 39, 249–289 (1925).

    Google Scholar 

  • Leydig, F.: Uber der Schleimkanale der Knochen-fische. Müll. Arch. Anat. Physiol. 170–181 (1850).

    Google Scholar 

  • Liff, H.J., Shamres, H.J.: Structure and motion of cupulae of lateral line organs in Necturus maculorus. III. A technique for measuring the freestanding lateral line cupulae. Quart. Prog. Rep. no. 104 Res. Lab. of Electron. M.I.T., p. 332–336 (1972).

    Google Scholar 

  • Lindblom, U., Tapper, D.N.: Integration of impulse activity in a peripheral sensory unit. Exp. Neurol. 15, 63–69 (1966).

    PubMed  CAS  Google Scholar 

  • Lissmann, H.W.: Zoology, locomotory adaptations and the problem of electric fish. In: The Cell and the Organism, p. 301–317 (J.A. Ransay and V.B. Wigglesworth, eds.). Cambridge: University Press 1961.

    Google Scholar 

  • Lowenstein, O., Wersäll, J.: Functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature (Lond.) 184, 1807 (1959).

    Google Scholar 

  • Mayser, P.: Vergleichende anatomische Studien über das Gehirn des Knockenfische mit besondere Berücksichtigung der Cyprinoiden. Z. wiss. Zool. 36, 259 (1882).

    Google Scholar 

  • McLennan, H.: Synaptic Transmission. London: Saunders (1963).

    Google Scholar 

  • Mulroy, M.J., Altmann, D.W., Weiss, T.F., Peake, W.T.: Intracellular electric responses to sound in a vertebrate cochlea. Nature (Lond.) 249, 482–485 (1974).

    CAS  Google Scholar 

  • Murray, M J., Capranica, R.R.: Spike generation in the lateral line afferents of Xenopus laevis: evidence favouring multiple sites of initiation. J. comp. Physiol. 87, 1–20 (1973).

    Google Scholar 

  • Murray, R.W.: Nerve endings as transducers of thermal stimuli in lower vertebrates. Nature (Lond.) 176, 698–699 (1955a).

    CAS  Google Scholar 

  • Murray, R.W.: The lateralis organs and their innervation in Xenopus laevis. Quart. J. micr. Sci. 96, 351–361 (1955b).

    Google Scholar 

  • Nicholls, J.G., Baylor, D.A.: Specific modalities and receptive fields of sensory fields in the CNS of the leech. J. Neurophysiol. 31, 740–756 (1968).

    PubMed  CAS  Google Scholar 

  • Nieder, P., Nieder, I.: Stimulation of efferent olivocochlear bundle causes release from low level masking. Nature (Lond.) 227, 184–185 (1970).

    CAS  Google Scholar 

  • Nieuwkoop, P.D., Faber, J.: Normal table of Xenopus laevis (Daudin). Amsterdam: North Holland Publishing Company 1967.

    Google Scholar 

  • Noble, G.K.: The biology of the Amphibia. New York: Dover Publ. Co. 1931.

    Google Scholar 

  • Oman, C.M.: Structure and Motion of cupulae of lateral line organs in Necturus maculosus: IV. Preliminary model for the dynamic response of the freestanding lateral line cupulae based on measurements of cupula stiffness. Quart. Progr. Rep. No. 104, Res. Lab. Electron. M.I.T., p. 336–343 (1972).

    Google Scholar 

  • Oman, C.M., Frischkopf, L.S.: Neural responses of lateral line organs in Necturus maculosus to direct mechanical stimulation. M.I.T. Quart. Progr. Rep. No. 108, Res. Lab. Electron. 332–338 (1973).

    Google Scholar 

  • Oman, C.M., Young, L.R.: Physiological range of pressure difference and cupula deflections in the human semicircular canal: theoretical consideration. In: Basic Aspects of Central Vestibular Mechanisms, p. 529–542 (A. Brodal, O. Pompeiano, eds.). Amsterdam: Elsevier Publ. Co. 1972.

    Google Scholar 

  • Onoda, N., Katsuki, Y.: Chemoreception of the lateral line organ of an aquatic amphibian, Xenopus laevis. Jap. J. Physiol. 22, 87–102 (1972).

    CAS  Google Scholar 

  • Osborne, M.P., Thornhill, R.A.: The effect of monoamine depleting drugs upon the synaptic bars in the Inner Ear of the Bullfrog (Rana catesbeiana). Z. Zellforsch. 127, 347–355 (1972).

    PubMed  CAS  Google Scholar 

  • Paterson, N.F.: The head of Xenopus laevis. Quart. J. micr. Sci. 81, 161–234 (1939).

    Google Scholar 

  • Piddington, R.W.: Central control of auditory input in the goldfish. II. Evidence of action in the free swimming animal. J. exp. Biol. 55, 585–610 (1971).

    PubMed  CAS  Google Scholar 

  • Precht, W., Llinás, R., Clarke, M.: Physiological responses of frog vestibular fibres to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971).

    PubMed  CAS  Google Scholar 

  • Pumphrey, R.J.: Hearing. Symp. Soc. exp. Biol. 4, 3–18 (1950).

    Google Scholar 

  • Reno, H.W., Middleton, H.H.: Lateral line system of Siren intermedia Le Conte (Amphibia: Sirenidae), during aquatic activity and aestivation. Acta zool. 54, 21–29 (1973).

    Google Scholar 

  • Roberts, B.L.: Activity of lateral line sense organs in swimming dogfish. J. exp. Biol. 56, 105–118 (1972).

    Google Scholar 

  • Roberts, B.L., Russell, I.J.: The activity of lateral line efferent neurones in stationary and swimming dogfish. J. exp. Biol. 57, 435–448 (1972).

    PubMed  CAS  Google Scholar 

  • Romer, A.S.: Vertebrate Paleontology, 2nd ed. Chicago: Chicago Univ. Press 1945.

    Google Scholar 

  • Rose, J.E., Brugge, J.F., Anderson, D.J., Hind, J.E.: Patterns of activity in single auditory nerve fibres of the squirrel monkey. In: Hearing Mechanisms in Vertebrates, p. 144–168 (A.V.S. de Reuck and J. Knight, eds.). London: Churchill 1968.

    Google Scholar 

  • Russell, I.J.: Influence of efferent fibres on a receptor. Nature (Lond.) 219, 177–178 (1968).

    CAS  Google Scholar 

  • Russell, I.J.: The influence of efferent fibres on lateral line organs. Ph.D. Thesis, Cambridge (1969).

    Google Scholar 

  • Russell, I.J.: The role of the lateral line efferent system in Xenopus laevis. J. exp. Biol. 54, 621–641 (1971a).

    PubMed  CAS  Google Scholar 

  • Russell, I.J.: The pharmacology of efferent synapses in the lateral line system of Xenopus laevis. J. exp. Biol. 54, 643–658 (1971b).

    PubMed  CAS  Google Scholar 

  • Russell, I.J.: Central and peripheral inhibition of lateral line input during the startle response in goldfish. Brain Res. 80, 517–522 (1974).

    PubMed  CAS  Google Scholar 

  • Russell, I.J.: The localization of vestibular and lateral line efferent neurones in the goldfish. In preparation 1976.

    Google Scholar 

  • Russell, I.J., Roberts, B.L.: Inhibition of spontaneous lateral line activity by efferent nerve stimulation. J. exp. Biol. 57, 77–82 (1972).

    Google Scholar 

  • Russell, I.J., Roberts, B.L.: Active reduction of lateral line sensitivity in swimming dogfish. J. comp. Physiol. 94, 7–15 (1974).

    Google Scholar 

  • Sand, A.: The mechanism of the lateral line sense organs of fishes. Proc. roy. Soc. B 123, 472–495 (1937).

    Google Scholar 

  • Sand, O., Ozawa, S., Hagiwara, S.: Electrical and mechanical stimulation of hair cells in the mudpuppy. J. comp. Physiol. A 102, 13–26 (1975).

    Google Scholar 

  • Scharrer, E.: Experiments on the function of the lateral line organs in the larvae of Ambystoma punctatum. J. exp. Zool. 61, 109–114 (1932).

    Google Scholar 

  • Schmidt, R.S.: Amphibian acoustico-lateralis efferents. J. cell. comp. Physiol. 65, 155–162 (1965).

    CAS  Google Scholar 

  • Schwartz, E.: Bau und Funktion der Seitenlinie des Streifen-hechtlings (Aplocheilus lineatus). Z. vergl. Physiol. 50, 55–87 (1965).

    Google Scholar 

  • Schwartz, E.: Analysis of surface wave perception in some teleosts. In: Lateral Line Detectors, p. 123–134 (P. Cahn, ed.). Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Schwartz, E.: Ferntastsinnesorgane von Oberfläschenfischen. Z. Morph. Tiere 67, 40–57 (1970).

    Google Scholar 

  • Schwartz, E.: Die Ortung von Wasserarellen durch Oberflächenfische. Z. vergl. Physiol. 74, 64–80 (1971).

    Google Scholar 

  • Schwartz, E.: Lateral-line mechanoreceptors in Fishes and Amphibians. In: Handbook of Sensory Physiology, vol. III/3, p. 257–278 (A. Fessard, ed.). Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Schwartz, E., Hasler, A.D.: Perception of surface waves by the blackstripe top minnow, Fundulus notatus. J. Fisheries Res. Board Can. 23, 1331–1352 (1966).

    Google Scholar 

  • Shelton, P.: The structure and function of the lateral line system in larval Xenopus laevis. J. exp. Zool. 178, 211–231 (1971).

    PubMed  CAS  Google Scholar 

  • Shelton, P.M.J.: The lateral line system at metamorphosis in Xenopus laevis (Daudin). J. Embryol. exp. Morph. 24, 511–524 (1970).

    PubMed  CAS  Google Scholar 

  • Speidel, C.C.: Correlated studies of sense organs and nerves of the lateral line in living frog tadpoles. 1. Regeneration of denervated organs. Neurology (Minneap.) 87, 29–55 (1947).

    CAS  Google Scholar 

  • Speidel, C.C.: In vivo studies of myelinated nerve fibres. Int. Rev. Cytol. 16, 173–231 (1964).

    PubMed  CAS  Google Scholar 

  • Steinbach, A.B., Bennett, M.V.L.: Effects of divalent ions and drugs on synaptic transmission in phasic electroreceptors in a mormyrid fish. J. gen. Physiol. 58, 58 (1971).

    Google Scholar 

  • Stensio, E. A.: The sensory lines and dermal bones of the cheek in fishes and amphibians. K. Svenska Vetensk. Handle. 24, 1–95 (1947).

    Google Scholar 

  • Stone, L.S.: Experiments on the development of the cranial ganglia and the lateral line sense organ in Ambystoma punctatum. J. exp. Zool. 35, (1922).

    Google Scholar 

  • Stone, L.S.: The development of lateral line sense organs in amphibians observed in living and vital stained preparations. J. comp. Neurol. 57, 507–540 (1933).

    Google Scholar 

  • Suga, N., Schlegel, P.: Neural attenuation of responses to emitted sounds in echolocating bats. Science 177, 82–84 (1972).

    PubMed  CAS  Google Scholar 

  • Suga, N., Schlegel, P.: Coding and processing in the auditory system of FM-signal-producing bats. J. acoust. Soc. Amer. 54, 174–190 (1973).

    CAS  Google Scholar 

  • Ten Kate, J.: The oculo-vestibular reflex of the growing pike. Ph.D. Thesis, Rijks-universitiette Groningen, Netherlands (1969).

    Google Scholar 

  • Thornhill, R.A.: The development of the labyrinth of the lamprey (Lampetra fluviatilis Linn. 1958). Proc. roy. Soc. B 181, 175–198 (1972).

    Google Scholar 

  • Tinbergen, N.: The Study of Instinct, pp. 25. Oxford: Clarendon Press, 1951.

    Google Scholar 

  • Weiss, T.F., Mulroy, M.J., Altman, D.W.: Intracellular responses to acoustic clicks in the inner ear of the alligator lizard. J. acoust. Soc. Amer. 55, 606–621 (1974).

    CAS  Google Scholar 

  • Wersäll, J.: Studies on the structure and innervation of the sensory epithelium of the crista ampullares in the guinea pig. A light and electronmicroscopic investigation. Acta oto-laryng. (Stockh.), Suppl. 126, 1–85 (1956).

    Google Scholar 

  • Wiederhold, M.L., Kiang, N.Y.S.: Effects of electric stimulation of the crossed olivo cochlear bundle on single auditory nerve fibres in the cat. J. acoust. Soc. Amer. 48, 950–965 (1970).

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Russell, I.J. (1976). Amphibian Lateral Line Receptors. In: Frog Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66316-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66316-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66318-5

  • Online ISBN: 978-3-642-66316-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics