Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 128))

Abstract

The development of hormone antagonists, or compounds which can reverse the physiological effects of hormone hypersecretion, has been a desirable and achievable goal for many small molecular weight hormones. The spectacular successes achieved with hormone antagonists such as spironolactone, RU-486 and cimetidine have stimulated pharmacologists and pharmaceutical companies to use similar strategies in the search for an antagonist to thyroid hormone. For the most part the development of steroid hormone antagonists followed a classical chemical synthetic route; systematic modifications either to the ring structure or to side chains of the steroid were carried out, the new compounds were tested in a hormone bioassay ultimately leading to clinical trials, and subsequently effective compounds were applied in clinical practice. Consequently, there is now a range of compounds which are safely able to inhibit the actions of mineralocorticoids, glucocorticoids, androgens and progestagens and which have extensive clinical utility. These compounds are also remarkably useful tools which can be used to understand the molecular mechanisms of steroid hormone action in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel RC, Botta JA, Morero RD, Farias RN (1990) Solubilization and purification of a membrane-associated 3,3’,5-tri-iodo-L-thyronine-binding protein from rat erythrocytes. Biochem J 270: 577–582

    PubMed  CAS  Google Scholar 

  • Ashizawa K, Willingham MC, Liang C-M, Cheng S-Y (1991) In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-biphosphate. J Biol Chem 266: 16842–16846

    PubMed  CAS  Google Scholar 

  • Ashizawa K, Cheng S-Y (1992) Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc Natl Acad Sci USA 89: 9277–9281

    Article  PubMed  CAS  Google Scholar 

  • Bakker O, van Beeren HC, Wiersinga WM (1994) Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone β 1-receptor protein. Endocrinology 134: 1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Ha I, Reinberg D, Tsai S, Tsai M-J, O’Malley BW (1993) Interaction of human thyroid hormone receptor β with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci USA 90: 8832–8836

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Leng X, Burris TP, Tsai SY, Tsai M-J, O’Malley BW (1995) The τ 4 activation domain of the thyroid hormone receptor is required for release of a putative co-repressor(s) necessary for transcriptional silencing. Mol Cell Biol 15: 76–86

    PubMed  CAS  Google Scholar 

  • Barlow JW, Raggatt LE, Lim C-F, Munro SL, Topliss DJ, Stockigt JR (1989) The thyroid hormone analogue SKF L-94901: nuclear occupancy and serum binding studies. Clin Sci 76: 495–501

    PubMed  CAS  Google Scholar 

  • Barlow JW, Raggatt LE, Lim C-F, Kolliniatis E, Topliss DJ, Stockigt JR (1991) The thyroid hormone analogue SKF-94901 and iodothyronine binding sites in mammalian tissues: Differences in cytoplasmic binding between liver and heart. Acta Endocrinol (Copenh) 124: 37–44

    CAS  Google Scholar 

  • Barlow JW, Curtis AJ, Raggatt LE, Loidl NM, Topliss DJ, Stockigt JR (1994) Drug competition for intracellular triiodothyronine-binding sites. Eur J Endocrinol 130: 417–421

    Article  PubMed  CAS  Google Scholar 

  • Barlow JW, Raggatt LE, Scholz GH, Loidl NM, Blok RB, Topliss DJ, Stockigt JR (1996) Preferential inhibition of cytoplasmic T3 binding is associated with reduced nuclear binding in cultured cells. Thyroid 6: 47–51

    Article  PubMed  CAS  Google Scholar 

  • Beato M (1989) Gene regulation by steroid hormones. Cell 56: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Blondeau J-P, Osty J, Francon J (1988) Characterization of the thyroid hormone transport system of isolated hepatocytes. J Biol Chem 263: 2685–2692

    PubMed  CAS  Google Scholar 

  • Blondeau J-P, Beslin A, Chantoux F, Francon J (1993) Triiodothyronine is a high-affinity inhibitor of amino acid transport system L, in cultured astrocytes. J Neurochem 60: 1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Towle H, Young W (1992) Spatial and temporal expression of α- and β- thyroid hormone receptor mRNAs, including the β 2-subtype, in the developing mammalian nervous system. J Neurosci 12: 2288–22302

    PubMed  CAS  Google Scholar 

  • Brtko J, Knopp J, Baker ME (1993) Inhibition of 3,5,3’-triiodothyronine binding to its receptor in rat liver by protease inhibitors and substrates. Mol Cell Endocrinol 93: 81–86

    Article  PubMed  CAS  Google Scholar 

  • Casanova J, Horowitz ZD, Copp RP, McIntyre WR, Pascaul A, Samuels HH (1984) Photoaffinity labeling of thyroid hormone nuclear receptors. J Biol Chem 259: 12084–12091

    PubMed  CAS  Google Scholar 

  • Cattini PA, Kardami E, Eberhardt NL (1988) Effect of butyrate on thyroid hormone-mediated gene expression in rat pituitary tumour cells. Mol Cell Endocrinol 56: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Centanni M, Robbins J (1987) Role of sodium in thyroid hormone uptake by rat skeletal muscle. J Clin Invest 80: 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Centanni M, Sapone A, Taglienti A, Andreoli M (1991) Effect of extracellular sodium on thyroid hormone uptake by mouse thymocytes. Endocrinology 129: 2175–2179

    Article  PubMed  CAS  Google Scholar 

  • Chalmers DK, Scholz GH, Topliss DJ, Kolliniatis E, Munro SL, Craik DJ, Iskander MN, Stockigt JR (1993) Thyroid hormone uptake by hepatocytes: structure-activity relationships of phenylanthranilic acids with inhibitory activity. J Med Chem 36: 1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee VK, Tata JR (1992) Thyroid hormone receptors and their role in development. Cancer Sury 14: 147–167

    CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454–457

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-Y, Hasumura S, Willingham MC, Pastan I (1986) Purification and characterization of a membrane-associated 3,3’,5-triiodo-L-thyronine binding protein from a human carcinoma cell line. Proc Natl Acad Sci USA 83: 947–951

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-Y, Ransom SC, McPhie P, Bhat MK, Mixson AJ, Weintraub BD (1994) Analysis of the binding of 3,3’,5-triiodo-L-thyronine and its analogues to mutant human β 1 thyroid hormone receptors: a model of the hormone binding site. Biochemistry 33: 4319–4326

    Article  PubMed  CAS  Google Scholar 

  • Childs GV, Taub K, Jones KE, Chin WW (1991) Triiodothyronone receptor β-2 messenger RNA expression by somatotrophs and thyrotropes: effect of propylthiouracil-induced hypothyroidism in rats. Endocrinology 129: 2767–2773

    Article  PubMed  CAS  Google Scholar 

  • Chiovato L, Martino E, Tonacchera M, Santini F, Lapi P, Mammoli C, Braverman LE, Pinchera A (1994) Studies on the in vitro cytotoxic effect of amiodarone. Endocrinology 134: 2277–2282

    Article  PubMed  CAS  Google Scholar 

  • Crowe TC, Cowen NL, Loidl NM, Topliss DJ, Stockigt JR, Barlow JW (1995) Down-regulation of thyroxine-binding globulin messenger ribonucleic acid by 3,5,3’triiodothyronine in human hepatoblastoma cells. J Clin Endocrinol Metab 80: 2233–2237

    Article  PubMed  CAS  Google Scholar 

  • Crowe TC, Loidl NM, Payne KL, Topliss DJ, Stockigt JR, Barlow JW (1996) Differential modulation of thyroid hormone responsiveness by retinoids in a human cell line. Endocrinology 137: 3187–3192

    Article  PubMed  CAS  Google Scholar 

  • Dalman FC, Koenig RJ, Perdew GH, Massa E, Pratt WB (1990) In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J Biol Chem 265: 3615–3618

    PubMed  CAS  Google Scholar 

  • Damm K, Thompson CC, Evans RM (1989) Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593–597

    Article  PubMed  CAS  Google Scholar 

  • Davis KD, Lazar MA (1992) Selective antagonism of thyroid hormone action by retinoic acid. J Biol Chem 267: 3185–3189

    PubMed  CAS  Google Scholar 

  • Docter R, Krenning EP, de Jong M, Hennemann G (1993) The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol (Oxf) 39: 499–518

    Article  CAS  Google Scholar 

  • Dozin B, Cahnmann HJ, Nikodem VM (1985) Comparative characterization of thyroid hormone receptors and binding proteins in rat liver nucleus, plasma membrane, and cytosol by photoaffinity labeling with L-thyroxine. Biochemistry 24: 5203–5208

    Article  PubMed  CAS  Google Scholar 

  • Drvota V, Bronnegard M, Hagglad J, Barkhem T, Sylven C (1995) Downregulation of thyroid hormone receptor subtype mRNA levels by amiodarone during catecholamine stress in vitro. Biochem Biophys Res Comm 211: 991–996

    Article  PubMed  CAS  Google Scholar 

  • Elfahime EL, Felix JM, Koch B (1994) Antagonistic effects of retinoic acid and triiodothyronine in the expression of corticoid-binding globulin (CBG) by cultured fetal hepatocytes. J Steroid Biochem Molec Biol 48: 467–474

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240: 889–895

    Article  PubMed  CAS  Google Scholar 

  • Everts ME, Docter R, van Buuren JCJ, van Koetsveld PM, Hofland LJ, de Jong M, Krenning EP, Hennemann G (1993) Evidence for carrier-mediated uptake of triiodothyronine in cultured anterior pituitary cells of euthyroid rats. Endocrinology 132: 1278–1285

    Article  PubMed  CAS  Google Scholar 

  • Everts ME, Visser TJ, Moerings EPCM, Tempelaars AMP, van Toor H, Docter R, de Jong M, Krenning EP, Hennemann G (1995) Uptake of 3,3’,5,5’tetraiodothyroacetic acid and 3,3’,5’-triiodothyronine in cultured rat anterior pituitary cells and their effects on thyrotropin secretion. Endocrinology 136: 4454–4461

    Article  PubMed  CAS  Google Scholar 

  • Fanjul AN, Farias RN (1991) Novel cold-sensitive cytosolic 3,5,3’-triiodo-L-thyroninebinding proteins in human red blood cell. J Biol Chem 266: 16415–16419

    PubMed  CAS  Google Scholar 

  • Fanjul AN, Farias RN (1993) Cold-sensitive cytosolic 3,5,3’-triiodo-L-thyroninebinding protein and pyruvate kinase from human erythrocytes share similar regulatory properties of hormone binding by glycolytic intermediates. J Biol Chem 268: 175–179

    PubMed  CAS  Google Scholar 

  • Freedman LP, Luisi BF (1993) On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J Cell Biochem 51: 140–150

    Article  PubMed  CAS  Google Scholar 

  • Gerrelli D, Huntriss JD, Latchman DS (1994) Antagonistic effects of retinoic acid and thyroid hormone on the expression of the tissue-specific splicing protein SmN in a clonal cell line derived from rat heart. J Mol Cell Cardiol 26: 713–719

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629

    Article  PubMed  CAS  Google Scholar 

  • Glass C (1994) Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15: 391–407

    PubMed  CAS  Google Scholar 

  • Goldstein RA, Katzenellenbogen JA, Luthey-Schultzen ZA, Seielstad DA, Wolynes PG (1993) Three-dimensional model for the hormone binding domain of steroid receptors. Proc Natl Acad Sci USA 90: 9949–9953

    Article  PubMed  CAS  Google Scholar 

  • Gotzsche LB (1993) Beta-adrenergic receptors, voltage-operated Ca2+-channels, nuclear triiodothyronine receptors and triiodothyronine concentration in pig myocardium after long-term low-dose amiodarone treatment. Acta Endocrinologica (Copenh) 129: 337–347

    CAS  Google Scholar 

  • Gotzsche LB, Orskov H (1994) Cardiac triiodothyronine nuclear receptor binding capacities in amiodarone-treated, hypo-and hyperthyroid rats. Eur J Endocrinol 130: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves E, Lakshmanan M, Cahnmann HJ, Robbins J (1990) High-affinity binding of thyroid hormones to neuroblastoma plasma membranes. Biochim Biophys Acta 1055: 151–156

    Article  PubMed  Google Scholar 

  • Harding PP, Duester G (1992) Retinoic acid activation and thyroid hormone repression of the human alcohol dehydrogenase gene ADH3. J Biol Chem 20: 14145–14150

    Google Scholar 

  • Hashizume K, Miyamoto T, Ichikawa K, Yamauchi K, Kobayashi M, Sakurai A, Ohtsuka H, Nishii Y, Yamada T (1989a) Purification and characterization of NADPH-dependent cytosolic 3,5,3’-triiodo-L-thyronine binding protein in rat kidney. J Biol Chem 264: 4857–4863

    PubMed  CAS  Google Scholar 

  • Hashizume K, Miyamoto T, Ichikawa K, Yamauchi K, Sakurai A, Ohtsuka H, Kobayashi M, Nishii Y, Yamada T (1989b) Evidence for the presence of two active forms of cytosolic 3,5,3’-triiodo-L-thyronine (T3)-binding protein (CTBP) in rat kidney. J Biol Chem 264: 4864–4871

    PubMed  CAS  Google Scholar 

  • Hashizume K, Miyamoto T, Yamauchi K, Ichikawa K, Kobayashi M, Ohtsuka H, Sakurai A, Suzuki S, Yamada T (1989c) Counterregulation of nuclear 3,5,3’triiodo-L-thyronine (T3) binding by oxidised and reduced-nicotinamide adenine dinucleotide phosphates in the presence of cytosolic T3-binding protein in vitro. Endocrinology 124: 1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Higueret P, Pallet V, Coustaut M, Audouin I, Begueret J, Garcin H (1992) Retinoic acid decreases retinoic acid and triiodothyronine nuclear receptor expression in the liver of hyperthyroidic rats. FEBS Lett 310: 101–105

    Article  PubMed  CAS  Google Scholar 

  • Hillier AP (1970) The binding of thyroid hormones to phospholipid membranes. J Physiol 211: 585–597

    PubMed  CAS  Google Scholar 

  • Hodin RA, Lazar MA, Wintman BI, Darling DS, Koenig RJ, Larsen PR, Moore DD, Chin WW (1989) Identification of a thyroid hormone receptor that is pituitary-specific. Science 244: 76–79

    Article  PubMed  CAS  Google Scholar 

  • Hodin RA, Lazar MA, Chin WW (1990) Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone. J Clin Invest 85: 101–105

    Article  PubMed  CAS  Google Scholar 

  • Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK, Rosenfeld MG (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404

    Article  PubMed  Google Scholar 

  • Hsu J-H, Zavacki AM, Harney JW, Brent GA (1995) Retinoid-X receptor ( RXR) differentially augments thyroid hormone response in cell lines as a function of the response element and endogenous RXR content. Endocrinology 136: 421–430

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa K, Hashizume K, Kobayashi M, Nishii Y, Ohtsuka H, Suzuki S, Takeda T, Yamada T (1992) Heat shock decreases nuclear transport of 3,5,3’-triiodo-Lthyronine in clone 9 cells. Endocrinology 130: 2317–2324

    Article  PubMed  CAS  Google Scholar 

  • Ishigaki S, Abramovitz M, Listowsky I (1989) Glutathione-S-transferases are major cytosolic thyroid hormone binding proteins. Arch Biiochem Biophys 273: 265–272

    Article  CAS  Google Scholar 

  • Jennings AS, Ferguson DC, Utiger RD (1979) Regulation of the conversion of thyrox- ine to triiodothyronine in the perfused rat liver. J Clin Invest 64: 1614–1623

    Article  PubMed  CAS  Google Scholar 

  • de Jong M, Docter R, van der Hoek HJ, Vos RA, Krenning EP, Hennemann G (1992) Transport of 3,5,3’-triiodothyronine into the perfused rat liver and subsequent metabolism are inhibited by fasting. Endocrinology 131: 463–470

    Article  PubMed  Google Scholar 

  • Kato H, Fukuda T, Parkison C, McPhie P, Cheng S-Y (1989) Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase. Proc Natl Acad Sci USA 86: 7861–7865

    Article  PubMed  CAS  Google Scholar 

  • Katz D, Lazar MA (1993) Dominant negative activity of an endogenous thyroid hormone receptor variant (α 2) is due to competition for binding sites on target genes. J Biol Chem 268: 20904–20910

    PubMed  CAS  Google Scholar 

  • Katz D, Reginato MJ, Lazar MA (1995) Functional regulation of thyroid hormone receptor variant TRa2 by phosphorylation. Mol Cell Biol 15: 2341–2348

    PubMed  CAS  Google Scholar 

  • van der Klis FRM, Nijenhuis AA, Wiersinga WM (1991) Inhibition of nuclear T3 binding by fatty acids liberated from nuclear membranes via phospholipase C. Int J Biochem 23: 1031–1034

    Article  Google Scholar 

  • Kragie L, Doyle D (1992) Benzodiazepines inhibit temperature-dependent L-[125I] triiodothyronine accumulation into human liver, human neuroblast, and rat pituitary cell lines. Endocrinology 130: 1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Krenning EP, Docter R, Bernard HF, Visser RJ, Hennemann G (1981) Characteristics of active transport of thyroid hormone into rat hepatocytes. Biochem Biophys Acta 676: 314–320

    PubMed  CAS  Google Scholar 

  • Krenning EP, Docter R (1986) Plasma membrane transport of thyroid hormone. In: Henneman G (ed) Thyroid hormone metabolism. Dekker, New York, pp 107–131

    Google Scholar 

  • Lakshmanan M, Gonçalves E, Lessly G, Foti D, Robbins J (1990) The transport of thyroxine into mouse neuroblastoma cells, NB41A3: the effect of L-system amino acids. Endocrinology 126: 3245–3250

    Article  PubMed  CAS  Google Scholar 

  • Lane JT, Godbole M, Strait KA, Schwartz HL, Oppenheimer JH (1991) Prolonged fasting reduces rat hepatic β l thyroid hormone receptor protein without changing the level of its messenger ribonucleic acid. Endocrinology 129: 2881–2885

    Article  PubMed  CAS  Google Scholar 

  • Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D (1992) Evolution of the nuclear receptor gene superfamily. EMBO J 11: 1003–1013

    PubMed  CAS  Google Scholar 

  • Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14: 184–193

    PubMed  CAS  Google Scholar 

  • Lee JW, Choi H-S, Gyuris J, Brent R, Moore DD (1995) Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol 9: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Leeson PD, Emmett JC, Shah VP, Showell GA, Novelli R, Prain HD, Benson MG, Ellis D, Pearce NJ, Underwood AH (1989) Selective thyromimetics. Cardiac-sparing thyroid hormone analogues containing 3’-arylmethyl substituents. J Med Chem 32: 320–336

    Article  PubMed  CAS  Google Scholar 

  • Lennon AM, Osty J, Nunez J (1980) Cytosolic thyroxine-binding protein and brain development. Mol Cell Endocrinol 18: 201–214

    Article  PubMed  CAS  Google Scholar 

  • Lennon AM (1992) Purification and characterization of rat brain cytosolic 3,5,3’-triiodo-L-thyronine-binding protein. Eur J Biochem 210: 79–85

    Article  PubMed  CAS  Google Scholar 

  • Lim C-F, Bernard BF, de Jong M, Docter R, Krenning EP, Hennemann G (1993a) A furan fatty acid and indoxyl sulfate are the putative inhibitors of thyroxine hepatocyte transport in uremia. J Clin Endocrinol Metab 76: 318–324

    Article  PubMed  CAS  Google Scholar 

  • Lim C-F, Docter R, Visser TJ, Krenning EP, Bernard B, van Toor H, de Jong M, Hennemann G (1993b) Inhibition of thyroxine transport into cultured rat hepatocytes by serum of non-uremic critically-ill patients, bilirubin and non-esterified fatty acids. J Clin Endocrinol Metab 76: 1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Mason JW (1987) Amiodarone. N Engl J Med 316: 455–466

    Article  PubMed  CAS  Google Scholar 

  • Mazzachi BC, Kennedy JA, Wellby ML, Edwards AM (1992) Effect of fatty acids on rat liver nuclear T3-receptor binding. Metabolism 41: 788–792

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AM, Manley SW, Mortimer RH (1992a) Uptake of L-tri-iodothyronine by human cultured trophoblast cells. J Endocrinol 133: 483–486

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AM, Manley SW, Mortimer RH (1992b) Membrane transport of thyroid hormone in the human choriocarcinoma cell line, JAR. Mol Cell Endocrinol 87: 139–145

    Article  CAS  Google Scholar 

  • Mitsuhashi T, Uchimura H, Takaku F (1987) n-Butyrate increases the level of thyroid hormone nuclear receptor in non-pituitary cultured cells. J Biol Chem 262: 3993–3999

    PubMed  CAS  Google Scholar 

  • Miyoshi Y, Nakamura H, Tagami T, Sasaki S, Nakao K (1994) 3,5,3’-Triiodothyronine stimulates retinoic acid-induced differentiation in HL-60 cells. Mol Cell Endocrinol 103: 119–123

    Google Scholar 

  • Movius EG, Phyillaier MM, Robbins J (1989) Phloretin inhibits cellular uptake and nuclear receptor binding of triiodothyronine in human Hep G2 hepatocarcinoma cells. Endocrinology 124: 1988–1997

    Article  PubMed  CAS  Google Scholar 

  • Murray MB, Zilz ND, McCreary NL, MacDonald MJ, Towle HC (1988) Isolation and characterisation of rat cDNA clones for two distinct thyroid hormone receptors. J Biol Chem 263: 12770–12777

    PubMed  CAS  Google Scholar 

  • Nishii Y, Hashizume K, Ichikawa K, Miyamoto T, Suzuki S, Takeda T, Yamauchi K, Kobayashi M, Yamada T (1989) Changes in cytosolic 3,5,3’-triiodo-L-thyronine (T3) binding activity during administration of L-thyroxine to thyroidectomised rats: cytosolic T3-binding protein and its activator act as intracellular regulators for nuclear T3 binding. J Endocrinol 123: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Nordeen SK, Bona BJ, Moyer ML (1993) Latent agonist activity of the steroid antagonist, RU486, is unmasked in cells treated with activators of protein kinase A. Mol Endocrinol 7: 731–742

    Article  PubMed  CAS  Google Scholar 

  • Norman MF, Lavin TN (1989) Antagonism of thyroid hormone action by amiodarone in rat pituitary tumor cells. J Clin Invest 83: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Obata T, Kitagawa S, Gong Q-H, Pastan I, Cheng S-Y (1988) Thyroid hormone down-regulates p55, a thyroid hormone-binding protein that is homologous to protein disulfide isomerase and the β-subunit of prolyl-4-hydroxylase. J Biol Chem 263: 782–785

    PubMed  CAS  Google Scholar 

  • Ortiz-Caro J, Montiel F, Pascual A, Aranda A (1986) Modulation of thyroid hormone nuclear receptors by short-chain fatty acids in glial C6 cells. J Biol Chem 261: 13997–14004

    PubMed  CAS  Google Scholar 

  • Osty J, Jego L, Francon J, Blondeau J-P (1988a) Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Endocrinology 123: 2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Osty J, Rappaport L, Samuel JL, Lennon AM (1988b) Characterization of a cytosolic triiodothyronine binding protein in atrium and ventricle of rat heart with different sensitivity toward thyroid hormone levels. Endocrinology 122: 1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Paradis P, Lambert C, Rouleau J (1991) Amiodarone antagonises the effects of T3 at the receptor level: an additional mechanism for its in vivo hypothyroid-like effects. Can J Physiol Pharmacol 69: 865–870

    Article  PubMed  CAS  Google Scholar 

  • Parkison C, Ashizawa K, McPhie P, Lin K-H, Cheng S-Y (1991) The monomer of pyruvate kinase, subtype M, is both a kinase and a cytosolic thyroid hormone binding protein. Biochem Biophys Res Comm 179: 668–674

    Article  PubMed  CAS  Google Scholar 

  • Prasad PD, Leibach FH, Mahesh VB, Ganapathy V (1994) Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells. Endocrinology 134: 574–581

    Article  PubMed  CAS  Google Scholar 

  • Sadhu DP, Brody S (1947) Excess vitamin A ingestion, thyroid size and energy metabolism. Am J Physiol 149: 400–403

    PubMed  CAS  Google Scholar 

  • Sakata S, Komaki T, Nakamura S, Ohshima M, Sagisaka K, Yoshioka N, Atassi MZ, Miura K (1990) Binding of thyroid hormones to human hemoglobin and localization of the binding site. J Protein Chem 9: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana M, Sarvesh A, Khadeer MA, Ved HS, Robert Soprano D, Rajeswari MR, Pieringer RA (1994) Regulation of neuronal thyroid hormone receptor α, mRNA by hydrocortisone, thyroid hormone and retinoic acid. Dev Neurosci 16: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Schröder-van der Elst JP, van der Heide D (1990) Thyroxine, 3,5,3’-triiodothyronine, and 3,3’,5-triiodothyronine concentrations in several tissues of the rat: effects of amiodarone and desethylamiodarone on thyroid hormone metabolism. Endocrinology 127: 1656–1664

    Article  Google Scholar 

  • Schwartz HL, Strait KA, Ling NC, Oppenheimer JH (1992) Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 267: 11794–11799

    PubMed  CAS  Google Scholar 

  • Seelig S, Law C, Towle HC, Oppenheimer JH (1981) Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc Natl Acad Sci USA 78: 4733–4737

    Article  PubMed  CAS  Google Scholar 

  • Shull JD, Pennington KL, Gurr JA, Ross AC (1995) Cell-type specific interactions between retinoic acid and thyroid hormone in the regulation of expression of the gene encoding ornithine aminotransferase. Endocrinology 136: 2120–2126

    Article  PubMed  CAS  Google Scholar 

  • Sugawara A, Yen PM, Chin WW (1994a) 9-cis Retinoic acid regulation of rat growth hormone gene expression: potential roles of multiple nuclear hormone receptors. Endocrinology 135: 1956–1962

    Article  CAS  Google Scholar 

  • Sugawara A, Yen PM, Apriletti JW, Ribeiro RCJ, Sacks DB, Baxter JD, Chin WW (1994b) Phosphorylation selectively increases triiodothyronine receptor homodimer binding to DNA. J Biol Chem 269: 433–437

    PubMed  CAS  Google Scholar 

  • Suzuki S, Hashizume K, Ichikawa K, Takeda T (1991) Ontogenesis of the high affinity NADPH-dependent cytosolic 3,5,3’-triiodo-L-thyronine-binding protein in rat. Endocrinology 129: 2571–2574

    Article  PubMed  CAS  Google Scholar 

  • Tagami T, Nakamura H, Sasaki S, Miyoshi Y, Imura H (1993) Estimation of the protein content of thyroid hormone receptor α and β 1 in rat tissues by western blotting. Endocrinology 132: 275–279

    Article  PubMed  CAS  Google Scholar 

  • Topliss DJ, Kolliniatis E, Barlow JW, Lim C-F, Stockigt JR (1989) Uptake of 3,5,3’-triiodothyronine by cultured rat hepatoma cells is inhibitable by nonbile acid cholephils, diphenylhydantoin, and nonsteroidal antiinflammatory drugs. Endocrinology 124: 980–986

    Article  PubMed  CAS  Google Scholar 

  • Topliss DJ, Scholz GH, Kolliniatis E, Barlow JW, Stockigt JR (1993) Influence of calmodulin antagonists and calcium channel blockers on triiodothyronine uptake by rat hepatoma and myoblast cell lines. Metabolism 42: 376–380

    Article  PubMed  CAS  Google Scholar 

  • Underwood AH, Emmett JC, Ellis D, Flynn SB, Leeson PD, Benson GM, Novelli R, Pearce NJ, Shah VP (1986) A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324: 425–429

    Article  PubMed  CAS  Google Scholar 

  • Wartofsky L (1993) Has the use of antithyroid drugs for Graves’ disease become obsolete? Thyroid 3: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Weisiger RA, Luxon BA, Cavalieri RR (1992) Hepatic uptake of 3,5,3’-triiodothyronine: electrochemical driving forces. Am J Physiol 262: G1104–G1112

    PubMed  CAS  Google Scholar 

  • Williams GR, Franklyn JA, Neuberger J, Sheppard MC (1989) Thyroid hormone receptor expression in the “sick” euthyroid syndrome. Lancet 2: 1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Williams GR, Franklyn JA, Sheppard MC (1991) Thyroid hormone and glucocorticoid regulation of receptor and target gene mRNAs in pituitary GH3 cells. Mol Cell Endocrinol 80: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Willams GR, Brent GA (1992) Specificity of nuclear hormone receptor action: who conducts the orchestra? J Endocrinol 135: 191–194

    Article  Google Scholar 

  • Wolf M, Hansen N, Greten H (1994) Interleukin 1β, tumor necrosis factor-a and interleukin 6 decrease nuclear thyroid hormone receptor capacity in a liver cell line. Eur J Endocrinol 131: 307–312

    Article  PubMed  CAS  Google Scholar 

  • Yen PM, Chin WW (1994) New advances in understanding the molecular mechanisms of thyroid hormone action. Trends Endocrinol Metab 5: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Vassy R, Nicolas P, Perret GY, Laurent S (1994) Antagonism between T3 and amiodarone on the contractility and the density of beta-adrenoceptors of chicken cardiac myocytes. Eur J Pharmacol 261: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Zhang X-K, Pfahl M (1993) Regulation of retinoid and thyroid hormone action through homodimeric and heterodimeric receptors. Trends Endocrinol Metab 4: 156–162

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Samson M, Francon J, Blondeau J-P (1992) Thyroid hormone concentrative uptake in rat erythrocytes. Biochem J 281: 81–86

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barlow, J.W., Crowe, T.C., Topliss, D.J. (1997). Thyroid Hormone Antagonism. In: Weetman, A.P., Grossman, A. (eds) Pharmacotherapeutics of the Thyroid Gland. Handbook of Experimental Pharmacology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60709-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60709-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64519-8

  • Online ISBN: 978-3-642-60709-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics