Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 264/2))

Abstract

Lipopolysaccharide (LPS) genes have many of the characteristics of PAIs but also differ in significant ways. Lipopolysaccharide differs from the products of most PAI genes in that it is an essential component of the cell, and mutants totally lacking LPS are not found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtman M, Pluschke G (1986) Clonal analysis of descent and virulence among selected Escherichia coli. Annu Rev Microbiol 40:185–210

    Article  PubMed  CAS  Google Scholar 

  • Achtman M, Heuzenroeder M, Kusecek B, Ochman H, Caugant D, Selander RK, Väisanen-Rhen V, Korhonen TK, Stuart S, ørskov F, ørskov I (1986) Clonal analysis of Escherichia coli O2: K1 isolated from diseased humans and animals. Infect Immun 51:268–276

    Google Scholar 

  • Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048

    Article  PubMed  CAS  Google Scholar 

  • Amor K, Heinrichs DE, Fridrich E, Ziebell K, Johnson RP, Whitfield C (2000) Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 68:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Andrianopoulos K, Wang L, Reeves PR (1998) Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol 180:998–1001

    PubMed  CAS  Google Scholar 

  • Bailey MJ, Hughes C, Koronakis V (1996) Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22:729–737

    Article  PubMed  CAS  Google Scholar 

  • Bastin DA, Brown PK, Haase A, Stevenson G, Reeves PR (1993) Repeat unit polysaccharides of bacteria: a model for polymerisation resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7:725–734

    Article  PubMed  CAS  Google Scholar 

  • Batchelor RA, Haraguchi GE, Hull RA, Hull SI (1991) Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane of Escherichia coli. J Bacteriol 173:5699–5704

    Google Scholar 

  • Berlyn MKB (1998) Linkage map of Escherichia coli K-12, edition 10: the traditional map. Micro Mol Biol Rev 62:814–984

    CAS  Google Scholar 

  • Beutin L, Manning PA, Achtman M, Willetts N (1981) sfrA and sfrB products of Escherichia coli K-12 are transcriptional control factors. J Bacteriol 145:840–844

    PubMed  CAS  Google Scholar 

  • Brooke JS, Valvano MA (1996) Biosynthesis of inner core lipopolysaccharide in enteric bacteria: identification and characterization of a conserved phosphoheptose isomerase. J Biol Chem 271:3608–3614

    Article  PubMed  CAS  Google Scholar 

  • Brown PK, Romana LK, Reeves PR (1992) Molecular analysis of the rfb gene cluster of Salmonella serovar Muenchen (strain M67): genetic basis of the polymorphism between groups C2 and B. Mol Microbiol 6:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Campos LC, Whittam TS, Gomes TAT, Andrade JRC, Trabulsi RL (1994) Escherichia coli serogroup 0111 includes several clones of diarrheagenic strains with different virulence properties. Infect Immun 62:3282–3288

    PubMed  CAS  Google Scholar 

  • CDC (1999) Laboratory methods for the diagnosis of epidemic dysentery and cholera. Atlanta, Georgia

    Google Scholar 

  • Coleman WG (1983) The rfaD gene codes for ADP-L-glycero-D-manno-heptose-6-epimerase. J Biol Chem 258:1985–1990

    PubMed  CAS  Google Scholar 

  • Curd H, Liu D, Reeves PR (1998) Relationships among the O-antigen gene clusters of Salmonella enterica groups B, Dl, D2, and D3. J Bacteriol 180:1002–1007

    PubMed  CAS  Google Scholar 

  • Eidels L, Osborn MJ (1971) Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proc Natl Acad Sci USA 68:1673–1677

    Article  PubMed  CAS  Google Scholar 

  • Eidels L, Osborne MJ (1974) Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose. Microbiol Rev 249:5642–5648

    CAS  Google Scholar 

  • Feng P (1993) Identification of Escherichia coli O157: H7 by DNA probe specific for an allel of uidA gene. Mol Cell Probes 7:151–154

    Article  PubMed  Google Scholar 

  • Feng P, Lampel KA, Karch H, Whittam TS (1998) Genotypic and phenotypic changes in the emergence of Escherichia coli O157: H7. J Infect Dis 177:1750–1753

    Article  PubMed  CAS  Google Scholar 

  • Franco VA, Liu D, Reeves PR (1998) The Wzz (Cld) protein in Escherichia coli: amino acid sequence variation determines O antigen chain length specificity. J Bacteriol 180:2670–2675

    PubMed  CAS  Google Scholar 

  • Frank MM, Joiner K, Hammer C (1987) The function of antibody and complement in the lysis of bacteria. Rev Infect Dis 9 [Suppl 5]:S537–545

    Article  PubMed  CAS  Google Scholar 

  • Gaspar JA, Thomas JA, Marolda CL, Valvano MA (2000) Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275

    Article  PubMed  CAS  Google Scholar 

  • Gemski PJ, Sheahan DG, Washington O, Formal SB (1972) Virulence of Shigella flexneri hybrids expressing Escherichia coli somatic antigens. Infect Immun 6:104–111

    PubMed  Google Scholar 

  • Goldman RC, Boiling TJ, Kohlbrenner WE, Kim Y, Fox JL (1986) Primary structure of CTP: CMP-3-deoxy-D-manno-octulosonate cytidyl-transferase (CMP-KDO synthetase) from Escherichia coli. J Biol Chem 261:15831–15835

    PubMed  CAS  Google Scholar 

  • Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell Vol 87:791–794

    CAS  Google Scholar 

  • Gulig PA (1990) Virulence plasmids of Salmonella typhimurium and other salmonellae. Microb Pathog 8:3–11

    Article  PubMed  CAS  Google Scholar 

  • Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M (1993) Molecular analysis of spv virulence genes of the salmonella virulence plasmids. Mol Microbiol 7:825–830

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs DE, Monteiro MAM, Perry MB, Whitfield C (1998a) The assembly system for the lipopoly-saccharide R2 core-type of Escherichia coli is a hydrid of those found in Escherichia coli K-12 and Salmonella enterica. J Biol Chem 273:8849–8859

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs DE, Yethon JA, Whitfield C (1998b) Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30: 221–232

    Article  PubMed  CAS  Google Scholar 

  • Hobbs M, Reeves PR (1994) The JUMPstart sequencer 39-bp element common to several polysac-charide gene clusters. Mol Microbiol 12:855–856

    Article  PubMed  CAS  Google Scholar 

  • Hobbs M, Reeves PR (1995) Genetic organisation and evolution of Yersinia pseudotuberculosis 3, 6-dideoxyhexose biosynthetic genes. Biochim Biophys Acta 1245:273–277

    Article  PubMed  Google Scholar 

  • Holst O, Brade H (1992) Chemical structure of the core region of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Jensen SO, Reeves PR (2001) Molecular evolution of the GDP-mannose pathway genes (manB and manC) in S. enterica. Microbiology 147:599–610

    PubMed  CAS  Google Scholar 

  • Johnson RP, Clarke RC, Wilson JB, Read SC, Rahn K, Renwick SA, Sandhu KA, Alves D, Karmali MA, Lior H, Mcewen SA, Spika JS, Gyles CL (1996) Growing concerns and recent outbreaks involving non-O157: H7 serotypes of verotoxigenic Escherichia coli. J Food Pro 59:1112–1122

    Google Scholar 

  • Kadrmas JL, Raetz CRH (1998) Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase I. J Biol Chem 273:2799–2807

    Article  PubMed  CAS  Google Scholar 

  • Keenleyside WJ, Whitefield C (1996) A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 271:28581–28592

    Article  PubMed  CAS  Google Scholar 

  • Kenne L, Lindberg B, Soderholm E, Bundle DR, Griffith DW (1983) Structural studies of the O-antigens from Salmonella greenside and Salmonella adelaide. Carbohydr Res 111:289–296

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Brown PK, Romana LK, Reeves PR (1991) Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serovar IIA, which determines the formation of the 3, 6 dideoxyhexose abequose. J Gen Microbiol 137:2689–2695

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Haase A, Reeves PR (1993) Molecular analysis of the 3, 6-dideoxyhexose pathway genes of Yersinia pseudotuberculosis serogroup IIa. J Bacteriol 175:1412–1422

    PubMed  CAS  Google Scholar 

  • Klena JD, Asford II RS, Schnaitman CA (1992) Role of Escherichia coli K12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen. J Bacteriol 174:7297–7307

    PubMed  CAS  Google Scholar 

  • Lai V, Wang L, Reeves PR (1998) Escherichia coli clone Sonnei (Shigella sonnei) had a chromosomal O-antigen gene cluster prior to gaining its current plasmid-borne O-antigen genes. J Bacteriol 180:2983–2986

    PubMed  CAS  Google Scholar 

  • Le Minor L, Popoff MY (1987) Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella. Int J Syst Bacteriol 37:465–468

    Article  Google Scholar 

  • Leeds JA, Welch RA (1996) RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol 178:1850–1857

    PubMed  CAS  Google Scholar 

  • Leeds JA, Welch RA (1997) Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 179:3519–3527

    PubMed  CAS  Google Scholar 

  • Li Q, Reeves PR (2000) Genetic variation of dTDP-L-rhamnose pathway genes in Salmonella enterica. Microbiology 146:2291–2307

    PubMed  CAS  Google Scholar 

  • Lindberg B, Lindh F, Longren J, Lindberg AA, Svenson SB (1981) Structural studies of the O-specific side-chain of the lipopolysaccharide from Escherichia coli O55. Carbohydr Res 97:105–112

    Google Scholar 

  • Lior H (1994) Classification of Escherichia coli. In: Gyles CL (ed) Escherichia coli in domestic animals and humans. CAB International, Wallingford, UK

    Google Scholar 

  • Liu D, Reeves PR (1994a) Escherichia coli regains its O antigen. Microbiology 140:49–57

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Reeves PR (1994b) Presence of different O antigen forms in three isolates of one clone of E. coli. Genetics 138:7–10

    CAS  Google Scholar 

  • Liu D, Haase AM, Lindqvist L, Lindberg AA, Reeves PR (1993) Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and El. J Bacteriol 175:3408–3413

    PubMed  CAS  Google Scholar 

  • Liu D, Lindquist L, Reeves PR (1995) Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyl transferases of groups B and C2 and acetyltransferase of group C2. J Bacteriol 177:4084–4088

    PubMed  CAS  Google Scholar 

  • Liu D, Cole R, Reeves PR (1996) An O-antigen processing function for Wzx(RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107

    PubMed  CAS  Google Scholar 

  • Mäkelä PH, Stocker BAD (1984) Genetics of lipopolysaccharide. In: Rietschel ET (ed) Handbook of endotoxin. Elsevier Science, Amsterdam

    Google Scholar 

  • Mäkelä PH, Valtonen W, Valtonen M (1973) Role of O-antigen (lipopolysaccharide) factors in the virulence of Salmonella. J Infect Dis 128 [Suppl]:S84–S85

    Google Scholar 

  • Manning PA, Stroeher UH, Morona R (1993) Molecular basis for O-antigen biosynthesis in Vibrio cholerae Ol: Ogawa-Inaba switching. In: Wachsmuth IK, Blake P, Olsvik O (eds) Vibrio cholerae and cholera. American Society for Microbiology, Washington DC

    Google Scholar 

  • McGrath BC, Osborn MJ (1991a) Evidence for energy-dependent transposition of core lipopolysaccharide across the inner membrane of Salmonella typhimurium. J Bacteriol 173:3134–3137

    PubMed  CAS  Google Scholar 

  • McGrath BC, Osborn MJ (1991b) Localisation of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173:649–654

    PubMed  CAS  Google Scholar 

  • Meier U, Mayer H (1985) Genetic location of genes encoding enterobacterial common antigen. J Bacteriol 163:756–762

    PubMed  CAS  Google Scholar 

  • Morrison DC, Kline LF (1977) Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides. J Immunol 118:362–368

    PubMed  CAS  Google Scholar 

  • Mulford CA, Osborn MJ (1983) A intermediate step in translocation of lipopolysaccharide to outer membrane of Salmonella typhimurium. Proc Natl Acad Sci USA 80:1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli Clin Microbiol Rev 11:142–201

    PubMed  CAS  Google Scholar 

  • Nieto JM, Bailey MJ, Hughes C, Koronakis V (1996) Suppression of transcription polarity in the Escherichia coli haemolysin operon by a short upstream element shared by polysaccharide and DNA transfer determinants. Mol Microbiol 19:705–713

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Wilson AC (1987a) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Wilson AC (1987b) Evolutionary history of enteric bacteria. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Ochman H, Whittam TS, Caugant DA, Sciander RK (1983) Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J Gen Microbiol 129:2715–2726

    PubMed  CAS  Google Scholar 

  • Osborn MJ (1979) Biosynthesis and assembly of the lipopolysaccharide of the outer membrane. In: Inouye M (ed) Bacterial outer membranes. John Wiley and Sons, New York

    Google Scholar 

  • Osborn MJ, Cynkin MA, Gilbert JM, Müller L, Singh M (1972) Synthesis of bacterial O-antigen. Methods Enzymol 28:583–601

    Article  Google Scholar 

  • Perry MB, MacLean L, Griffith DW (1986) Structure of the O-chain polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli 0:157: H7. Biochem Cell Biol 64:21–28

    Article  PubMed  CAS  Google Scholar 

  • Plötz BM, Lindner B, Stetter KO, Holst O (2000) Characterization of a novel Lipid A containing D-galaturonic acid that replaces phosphate residues. J Biol Chem 275:11222–11228

    Article  PubMed  Google Scholar 

  • Pluschke G, Mayden J, Achtman M, Levine RP (1983) Role of the capsule and the O-antigen in resistance of O18: K1 Escherichia coli to complement-mediated killing. J Bacteriol 42:907–913

    CAS  Google Scholar 

  • Popoff MY, Le Minor L (1997) Antigenic formulas of the Salmonella serovars, 7th revision. WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur Paris, France

    Google Scholar 

  • Pupo GM, Karaolis DKR, Lan R, Reeves PR (1997) Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65:2685–2692

    PubMed  CAS  Google Scholar 

  • Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572

    Article  PubMed  CAS  Google Scholar 

  • Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    Article  PubMed  CAS  Google Scholar 

  • Raetz CRH (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhardt FD (ed) Escherichia and Salmonella typhimurium: Cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Rauss K, Kontrohr T, Vertenyi A, Szendrei L (1970) Serological and chemical studies of Sh. sonnei, Pseudomonas shigelloides and C27 strains. Acta Microbi Acad Sci Huang 17:157–166

    CAS  Google Scholar 

  • Reeves PR (1992) Variation in O antigens, niche specific selection and bacterial populations. FEMS Microbiol Lett 100:509–516

    Google Scholar 

  • Reeves PR (1994) Biosynthesis and assembly of lipopolysaccharide. In: Neuberger A, van Deenen LLM (eds) Bacterial cell wall. Elsevier, Amsterdam

    Google Scholar 

  • Reeves PR, Hobbs M, Valvano M, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz C, Rick P (1996a) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503

    Article  PubMed  CAS  Google Scholar 

  • Reeves PR, Hobbs M, Valvano M, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz C, Rick P (1996b) A new nomenclature for bacterial surface polysaccharide genes, http://www.angissuozau/BacPolGenes/welcome/html

    Google Scholar 

  • Reid SD, Selander RK, Whittam TS (1999) Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. J Bacteriol 181:153–160

    PubMed  CAS  Google Scholar 

  • Rick PD, Raetz CRH (1999) Microbial pathways of lipid A biosynthesis. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York

    Google Scholar 

  • Rietschel ET, Brade L, Lindner B, Zähringer U (1992) Biochemistry of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Rodrigues J, Scaletsky ICA, Campos LC, Gomes TAT, Whittam TS, Trabulis LR (1996) Clonal structure and virulence factors in strains of Escherichia coli of the classic serogroup 055. Infect Immun 64:2680–2686

    PubMed  CAS  Google Scholar 

  • Rotger R, Casadesus J (1999) The virulence plasmids of Salmonella. Int Microbiol 2:177–184

    PubMed  CAS  Google Scholar 

  • Sanderson KE, Hessel A, Rudd KE (1995) Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev 59:241–303

    PubMed  CAS  Google Scholar 

  • Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682

    PubMed  CAS  Google Scholar 

  • Selander RK, Beltran P, Smith NH (1991) Evolutionary genetics of Salmonella. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the molecular level. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Shepherd JG, Wang L, Reeves PR (2000) Comparison of O-antigen gene clusters of Escherichia coli (Shigella) Sonnei and Plesiomonas shigelloides O17: Sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immun 68:6056–6061

    Article  PubMed  CAS  Google Scholar 

  • Stevens MP, Clarke BR, Roberts IS (1997) Regulation of the Escherichia coli K5 capsule gene cluster by transcription antitermination. Mol Microbiol 24:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Stevenson G, Andrianopoulos K, Hobbs H, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    PubMed  CAS  Google Scholar 

  • Stevenson G, Lan R, Reeves PR (2000) The Colanic Acid gene cluster of Salmonella enterica has a complex history. FEMS Microbiol Lett 191:11–16

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T (1997) Evolutionary relationship among rfb gene clusters synthesizing mannose homopolymer as O-specific polysaccharides in Escherichia coli and Klebsiella. Gene 198:111–113

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T (1998) Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. J Bacteriol 180:2775–2778

    PubMed  CAS  Google Scholar 

  • Takayama K, Qureshi N (1992) Chemical structure of lipid A. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Taylor DN, Trofa AC, Sadoff J, Chu C, Bryla D, Shiloach J, Cohen D, Ashkenazi S, Lerman Y, Egan W, Schneerson R, Robbins JB (1993) Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shigella dysenteriae type 1, Shigella flexneri type 2a, and Shigella sonnei (Plesiomonas shigelloides) bound to bacterial toxoids. Infect Immun 61:3678–3687

    PubMed  CAS  Google Scholar 

  • Thampapillai G, Lan R, Reeves PR (1994) Molecular evolution in the gnd locus of Salmonella enterica. Mol Biol Evol 11:813–828

    PubMed  CAS  Google Scholar 

  • Valvano MA, Marolda CL, Bittner M, Glaskin-Clay M, Simon TL, Klena JD (2000) The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose. J Bacteriol 182:488–497

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Reeves PR (1998) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66:3545–3551

    PubMed  CAS  Google Scholar 

  • Wang L, Jensen S, Hallman R, Reeves PR (1998) Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 165:201–206

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Rothemund D, Curd H, Reeves PR (2000) Sequence diversity of the Escherichia coli H7 fliC genes: Implication for a DNA based typing scheme for E. coli O157: H7. J Clin Microbiol 38:1786–1790

    PubMed  CAS  Google Scholar 

  • Whittam TS (1996) Genetic variation and evolutionary processes in natural populations of Escherichia coli. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia and Salmonella. Cellular and molecular biology. ASM Press, Washington, DC

    Google Scholar 

  • Whittam TS, Wilson RA (1988) Genetic relationships among pathogenic Escherichia coli of serogroup O157. Infect Immun 56:2467–2473

    PubMed  CAS  Google Scholar 

  • Whittam TS, Wolfe ML, Wachsmuth IK, ørskov F, ørskov I, Wilson RA (1993) Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61:1619–1629

    Google Scholar 

  • Woisetschlager M, Hogenauer G (1987) The kdsA gene coding for S-deoxy-D-manno-octulosonic acid 8-phosphate synthetase is part of an operon in Escherichia coli. Mol Gen Genet 207:369–373

    Article  PubMed  CAS  Google Scholar 

  • Woisetschlager M, Hodel-Neuhofer A, Hogenauer G (1988) Localization of the kdsA gene with the aid of the physical map of the Escherichia coli chromosome. J Bacteriol 170:5382–5384

    PubMed  CAS  Google Scholar 

  • Xiang SH, Hobbs M, Reeves PR (1994) Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and Dl strains. J Bacteriol 176:4357–4365

    PubMed  CAS  Google Scholar 

  • Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C (1998) Involvement of waa Y, waa Q, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273:26310–26316

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Al-Hendy A, Toivanen P, Skurnik M (1993) Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O:3: similarities to the dTDP-L-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol 9: 309–321

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Toivanen P, Skurnik M (1996) The gene cluster directing O-antigen biosynthesis in Yersinia enterocolitica serotype O8: identification of the genes for mannose and galactose biosynthesis and the gene for the O-antigen polymerase. Microbiology 142:277–288

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Radziejewska-Lebrecht J, Krajewska-Pietrasik D, Toivanen P, Skurnik M (1997) Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O8. Mol Microbiol 23:63–76

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reeves, P.P., Wang, L. (2002). Genomic Organization of LPS-Specific Loci. In: Hacker, J., Kaper, J.B. (eds) Pathogenicity Islands and the Evolution of Pathogenic Microbes. Current Topics in Microbiology and Immunology, vol 264/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56031-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56031-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62720-0

  • Online ISBN: 978-3-642-56031-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics