Skip to main content

The Beginnings of Geometric Graph Theory

  • Chapter
Erdős Centennial

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 25))

Abstract

Geometric graphs (topological graphs) are graphs drawn in the plane with possibly crossing straight-line edges (resp., curvilinear edges). Starting with a problem of Heinz Hopf and Erika Pannwitz from 1934 and a seminal paper of Paul Erdős from 1946, we give a biased survey of Turán-type questions in the theory of geometric and topological graphs. What is the maximum number of edges that a geometric or topological graph of n vertices can have if it contains no forbidden subconfiguration of a certain type? We put special emphasis on open problems raised by Erdős or directly motivated by his work.

“… to ask the right question and to ask it of the right person.” (Richard Guy)

Supported by NSF Grant CCF-08-30272, by OTKA under EUROGIGA projects GraDR and ComPoSe 10-EuroGIGA-OP-003, and by Swiss National Science Foundation Grants 200020-144531 and 200021-137574.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Ackerman: On the maximum number of edges in topological graphs with no four pairwise crossing edges, Discrete Comput. Geom. 41 (2009), 365–375.

    MATH  MathSciNet  Google Scholar 

  2. E. Ackerman, J. Fox, J. Pach, and A. Suk: On grids in topological graphs, in: 25th ACM Symp. on Comput. Geom. (SoCG), ACM Press, New York, 2009, 403–412.

    Google Scholar 

  3. E. Ackerman and G. Tardos: On the maximum number of edges in quasi-planar graphs, J. Combin. Theory, Ser. A 114 (2007), 563–571.

    MATH  MathSciNet  Google Scholar 

  4. P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir: Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1997), 1–9.

    MATH  MathSciNet  Google Scholar 

  5. M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi: Crossing free graphs, Ann. Discrete Math. 12 (1982), 9–12.

    MATH  Google Scholar 

  6. N. Alon and P. Erdős: Disjoint edges in geometric graphs, Discrete Comput. Geom. 4 (1989), 287–290.

    MATH  MathSciNet  Google Scholar 

  7. D. Avis, P. Erdős, and J. Pach: Repeated distances in space, Graphs Combin. 4 (1988), 207–217.

    MATH  MathSciNet  Google Scholar 

  8. S. Avital and H. Hanani: Graphs, continuation, Gilyonot Le’matematika 3, issue 2 (1966), 2–8.

    Google Scholar 

  9. H. Baron: Lösung der Aufgabe 167, Jahresbericht Deutsch. Math.-Verein. 45 (1935), 112.

    Google Scholar 

  10. B. Bollobás and A. Thomason: Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European J. Combin. 19 (1998), 883–887.

    MATH  MathSciNet  Google Scholar 

  11. K. Borsuk: Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–190.

    Google Scholar 

  12. D. Boutin: Convex geometric graphs with no short self-intersecting paths, Congr. Numer. 160 (2003), 205–214.

    MATH  MathSciNet  Google Scholar 

  13. P. Brass: On the maximum number of unit distances among n points in dimension four, in: Intuitive Geometry (I. Bárány et al., eds.), Bolyai Soc. Math. Studies 4, Springer, Berlin, 1997, 277–290.

    Google Scholar 

  14. P. Brass, W. Moser, and J. Pach: Research Problems in Discrete Geometry, Springer, New York, 2005.

    MATH  Google Scholar 

  15. G. Cairns and Y. Nikolayevsky: Bounds for generalized thrackles, Discrete Comput. Geom. 23 (2000), 191–206.

    MATH  MathSciNet  Google Scholar 

  16. G. Cairns and Y. Nikolayevsky: Outerplanar thrackles, Graphs Combin. 28 (2012), 85–96.

    MATH  MathSciNet  Google Scholar 

  17. P. A. Catlin: Hajós’ graph-coloring conjecture: variations and counterexamples, J. Combin. Theory, Ser. B 26 (1979), 268–274.

    MATH  MathSciNet  Google Scholar 

  18. J. Černý: Geometric graphs with no three disjoint edges, Discrete Comput. Geom. 34 (2005), 679–695.

    MATH  MathSciNet  Google Scholar 

  19. F. R. K. Chung: On the number of different distances determined by n points in the plane, J. Combin. Theory, Ser. A 36 (1984), 342–354.

    MATH  MathSciNet  Google Scholar 

  20. F. R. K. Chung, E. Szemerédi, and W. T. Trotter: The number of different distances determined by a set of points in the Euclidean plane, Discrete Comput. Geom. 7 (1992), 1–11.

    MATH  MathSciNet  Google Scholar 

  21. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160. See also: H. Kaplan, J. Matoušek, Z. Safernová, and M. Sharir: Unit distances in three dimensions, Combin. Probab. Comput. 21 (2012), 597–610; and J. Zahl: An improved bound on the number of point-surface incidences in three dimensions, Contrib. Discrete Math., to appear.

    MATH  MathSciNet  Google Scholar 

  22. G. A. Dirac: Homomorphism theorems for graphs, Math. Ann. 153 (1964), 69–80.

    MathSciNet  Google Scholar 

  23. G. A. Dirac: Chromatic number and topological complete subgraphs, Canad. Math. Bull. 8 (1965), 711–715.

    MATH  MathSciNet  Google Scholar 

  24. V. L. Dolnikov: Some properties of graphs of diameters, Discrete Comput. Geom. 24 (2000), 293–299.

    MathSciNet  Google Scholar 

  25. H. G. Eggleston: Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11–24.

    MATH  MathSciNet  Google Scholar 

  26. G. Elekes: On the number of sums and products, Acta Arith. 81 (1997), 365–367.

    MATH  MathSciNet  Google Scholar 

  27. G. Elekes and M. Sharir: Incidences in three dimensions and distinct distances in the plane, Combin. Probab. Comput. 20 (2011), 571–608.

    MATH  MathSciNet  Google Scholar 

  28. P. Erdős: On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.

    MathSciNet  Google Scholar 

  29. P. Erdős: Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.

    MathSciNet  Google Scholar 

  30. P. Erdős: Néhány geometriai problémáról, Mat. Lapok 8 (1957), 86–92.

    MathSciNet  Google Scholar 

  31. P. Erdős: On sets of distances of n points in Euclidean space, Magyar Tudom. Akad. Matem. Kut. Int. Közl. (Publ. Math. Inst. Hung. Acad. Sci.) 5 (1960), 165–169.

    Google Scholar 

  32. P. Erdős: On some problems of elementary and combinatorial geometry, Ann. Mat. Pura Appl. (4) 103 (1975), 99–108.

    MathSciNet  Google Scholar 

  33. P. Erdős: Extremal problems in number theory, combinatorics and geometry, in: Proceedings of the International Congress of Mathematicians, Vol. 1 (Warsaw, 1983), PWN, Warsaw, 1984, 51–70.

    Google Scholar 

  34. P. Erdős: Problems and results in discrete mathematics, Discrete Math. 136 (1994), 53–73.

    MathSciNet  Google Scholar 

  35. P. Erdős and S. Fajtlowicz: On the conjecture of Hajós, Combinatorica 1 (1981), 141–143.

    MathSciNet  Google Scholar 

  36. P. Erdős and A. Hajnal: On complete topological subgraphs of certain graphs, Ann. Univ. Sci. Budapest. Eö tvös Sect. Math. 7 (1964), 143–149.

    Google Scholar 

  37. P. Erdős, L. Lovász, and K. Vesztergombi: On graphs of large distances, Discrete Comput. Geom. 4 (1989), 541–549.

    MathSciNet  Google Scholar 

  38. P. Erdős and J. Pach: Variations on the theme of repeated distances, Combinatorica 10 (1990), 261–269.

    MathSciNet  Google Scholar 

  39. P. Erdős and G. Purdy: Extremal problems in combinatorial geometry, in: Handbook of Combinatorics, Vol. 1, Elsevier Sci. B. V., Amsterdam, 1995, 809–874.

    Google Scholar 

  40. P. Erdős and A. H. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.

    MathSciNet  Google Scholar 

  41. S. Felsner: Geometric Graphs and Arrangements, Vieweg & Sohn, Wiesbaden, 2004.

    MATH  Google Scholar 

  42. W. Fenchel and J. W. Sutherland: Lösung der Aufgabe 167, Jahresbericht Deutsch. Math.-Verein. 45 (1935), 33–35.

    Google Scholar 

  43. J. Fox and J. Pach: Coloring K k-free intersection graphs of geometric objects in the plane, European J. Combin. 33 (2012), 853–866.

    MATH  MathSciNet  Google Scholar 

  44. J. Fox, J. Pach, and A. Suk: The number of edges in k-quasi-planar graphs, SIAM J. Discrete Math., 27 (2013), 550–561.

    MATH  MathSciNet  Google Scholar 

  45. J. Fox, J. Pach, and C. D. Tóth: A bipartite strengthening of the crossing lemma, J. Combin. Theory, Ser. B 100 (2010), 23–35.

    MATH  MathSciNet  Google Scholar 

  46. J. Fox and B. Sudakov: Density theorems for bipartite graphs and related Ramsey-type results, Combinatorica 29 (2009), 153–196.

    MATH  MathSciNet  Google Scholar 

  47. R. Fulek and J. Pach: A computational approach to Conway’s thrackle conjecture, Comput. Geom. 44 (2011), 345–355.

    MATH  MathSciNet  Google Scholar 

  48. R. Fulek and A. Ruiz-Vargas: Topological graphs: empty triangles and disjoint matchings, Proc. 29th Symposium on Computational Geometry (SoCG’ 13), ACM Press, New York, 2013, to appear.

    Google Scholar 

  49. W. Goddard, M. Katchalski, and D. Kleitman: Forcing disjoint segments in the plane, European J. Combin. 17 (1996), 391–395.

    MATH  MathSciNet  Google Scholar 

  50. J. E. Goodman and J. O’Rourke, eds.: Handbook of Discrete and Computational Geometry. 2nd edition, Chapman & Hall/CRC, Boca Raton, 2004.

    MATH  Google Scholar 

  51. B. Grünbaum: A proof of Vázsonyi’s conjecture, Bull. Res. Council Israel, Sect. A 6 (1956), 77–78.

    MathSciNet  Google Scholar 

  52. A. Heppes: Beweis einer Vermutung von A. Vázsonyi, Acta Math. Acad. Sci. Hungar. 7 (1956), 463–466.

    MathSciNet  Google Scholar 

  53. A. Heppes and P. Révész: Zum Borsukschen Zerteilungsproblem, Acta Math. Acad. Sci. Hungar. 7 (1956), 159–162.

    MATH  MathSciNet  Google Scholar 

  54. A. Hinrichs and Ch. Richter: New sets with large Borsuk numbers, Discrete Math. 270 (2003), 137–147.

    MATH  MathSciNet  Google Scholar 

  55. H. Hopf and E. Pannwitz: Aufgabe Nr. 167, Jahresbericht d. Deutsch. Math.-Verein. 43 (1934), 114.

    Google Scholar 

  56. H. A. Jung: Anwendung einer Methode von K. Wagner bei Färbungsproblemen für Graphen, Math. Ann. 161 (1965), 325–326.

    MATH  MathSciNet  Google Scholar 

  57. J. Kahn and G. Kalai: A counterexample to Borsuk’s conjecture, Bull. Amer. Math. Soc. (N.S.) 29 (1993), 60–62.

    MATH  MathSciNet  Google Scholar 

  58. N. H. Katz: On arithmetic combinatorics and finite groups, Illinois J. Math. 49 (2005), 33–43.

    MATH  MathSciNet  Google Scholar 

  59. N. H. Katz and G. Tardos: A new entropy inequality for the Erdős distance problem, in: Towards a Theory of Geometric Graphs, Contemp. Math. 342, Amer. Math. Soc., Providence, 2004, 119–126.

    Google Scholar 

  60. M. Klazar and A. Marcus: Extensions of the linear bound in the Füredi-Hajnal conjecture, Adv. in Appl. Math. 38 (2007), 258–266.

    MATH  MathSciNet  Google Scholar 

  61. J. Komlós and E. Szemerédi: Topological cliques in graphs. II, Combin. Probab. Comput. 5 (1996), 79–90.

    MATH  MathSciNet  Google Scholar 

  62. M. van Kreveld and B. Speckmann, eds.: Graph Drawing. (Revised selected papers from the 19th International Symposium (GD 2011) held at the Technical University of Eindhoven, Eindhoven.) Lecture Notes in Computer Science 7034, Springer, Heidelberg, 2012.

    MATH  Google Scholar 

  63. Y. S. Kupitz: Extremal Problems of Combinatorial Geometry, Lecture Notes Series 53, Aarhus University, Denmark, 1979.

    Google Scholar 

  64. Y. S. Kupitz, H. Martini, and M. A. Perles: Finite sets in R d with many diameters—a survey, in: Proceedings of the International Conference on Mathematics and Applications (ICMA-MU 2005, Bangkok), Mahidol University Press, Bangkok, 2005, 91–112. Also in: East-West J. Math.: Contributions in Mathematics and Applications (2007), 41–57.

    Google Scholar 

  65. Y. S. Kupitz, H. Martini, and B. Wegner: Diameter graphs and full equi-intersectors in classical geometries, in: IV. International Conference in Stoch. Geo., Conv. Bodies, Emp. Meas. & Apps. to Eng. Sci., Vol. II, Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II (2002), 65–74.

    Google Scholar 

  66. T. Leighton; Complexity Issues in VLSI. Foundations of Computing Series, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  67. L. Lovász, J. Pach, and M. Szegedy: On Conway’s thrackle conjecture, Discrete Comput. Geom. 18 (1997), 369–376.

    MATH  MathSciNet  Google Scholar 

  68. W. Mader: Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265–268.

    MATH  MathSciNet  Google Scholar 

  69. W. Mader: 3n−5 edges do force a subdivision of K 5, Combinatorica 18 (1998), 569–595.

    MATH  MathSciNet  Google Scholar 

  70. B. Mohar and C. Thomassen: Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.

    MATH  Google Scholar 

  71. L. Moser: On the different distances determined by n points, Amer. Math. Monthly 59 (1952), 85–91.

    MATH  MathSciNet  Google Scholar 

  72. A. Nilli: On Borsuk’s problem, in: Jerusalem Combinatorics’ 93, Contemporary Math. 178 (1994), 209–210.

    MathSciNet  Google Scholar 

  73. M. Morse: The International Congress in Oslo, Bull. Amer. Math. Soc. 42 (1936), 777–781.

    MathSciNet  Google Scholar 

  74. J. Pach, ed.: Towards a Theory of Geometric Graphs. Contemp. Math. 342, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  75. J. Pach, ed.: Thirty Essays on Geometric Graph Theory, Springer, New York, 2013.

    MATH  Google Scholar 

  76. J. Pach and P. K. Agarwal: Combinatorial Geometry, John Wiley & Sons, New York, 1995.

    MATH  Google Scholar 

  77. J. Pach, R. Pinchasi, M. Sharir, and G. Tóth: Topological graphs with no large grids, Graphs and Combinatorics 21 (2005), 355–364.

    MATH  MathSciNet  Google Scholar 

  78. J. Pach, R. Pinchasi, T. Tardos, and G. Tóth: Geometric graphs with no self-intersecting path of length three, European J. Combin. 25 (2004), 793–811.

    MATH  MathSciNet  Google Scholar 

  79. J. Pach, R. Radoičić, and G. Tóth: Relaxing planarity for topological graphs, in: Discrete and Computational Geometry, Lecture Notes in Comput. Sci. 2866, Springer, Berlin, 2003, 221–232.

    Google Scholar 

  80. J. Pach, R. Radoičić, G. Tardos, and G. Tóth: Improving the crossing lemma by finding more crossings in sparse graphs, Discrete Comput. Geom. 36 (2006), 527–552.

    MATH  MathSciNet  Google Scholar 

  81. J. Pach, F. Shahrokhi, and M. Szegedy: Applications of the crossing number, Algorithmica 16 (1996), 111–117.

    MATH  MathSciNet  Google Scholar 

  82. J. Pach, J. Solymosi, and G. Tóth: Unavoidable configurations in complete topological graphs, Discrete Comput. Geom. 30 (2003), 311–320.

    MATH  MathSciNet  Google Scholar 

  83. J. Pach and E. Sterling: Conway’s conjecture for monotone thrackles, Amer. Math. Monthly 118, 544–548.

    Google Scholar 

  84. J. Pach and G. Tardos: Forbidden paths and cycles in ordered graphs and matrices, Israel J. Math. 155 (2006), 359–380.

    MATH  MathSciNet  Google Scholar 

  85. J. Pach and G. Tóth: Disjoint edges in topological graphs, J. Comb. 1 (2010), 335–344.

    MATH  MathSciNet  Google Scholar 

  86. J. Pach and J. Törőcsik: Some geometric applications of Dilworth’s theorem, Discrete Comput. Geom. 12 (1994), 1–7.

    MATH  MathSciNet  Google Scholar 

  87. A. Perlstein and R. Pinchasi: Generalized thrackles and geometric graphs in R 3 with no pair of strongly avoiding edges, Graphs Combin. 24 (2008), 373–389.

    MATH  MathSciNet  Google Scholar 

  88. A. M. Raigorodskii: Three Lectures on the Borsuk Partition Problem. Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser. 347, Cambridge Univ. Press, Cambridge, 2008, 202–247.

    Google Scholar 

  89. Z. Schur, M. A. Perles, H. Martini, and Y. S. Kupitz: On the number of maximal regular simplices determined by n points in ℝd, in: Discrete and Computational Geometry, The Goodman-Pollack Festschrift (Aronov et al., eds.), Algorithms Combin. 25, Springer, Berlin, 2003, 767–787.

    Google Scholar 

  90. J. Solymosi and Cs. Tóth: Distinct distances in the plane, Discrete Comput. Geom. 25 (2001), 629–634.

    MATH  MathSciNet  Google Scholar 

  91. J. Spencer, E. Szemerédi, and W. T. Trotter: Unit distances in the Euclidean plane, in: Graph Theory and Combinatorics (B. Bollobás, ed.), Academic Press, London, 1984, 293–303.

    Google Scholar 

  92. S. Straszewicz: Sur un problème géométrique de P. Erdős, Bull. Acad. Pol. Sci., Cl. III 5 (1957), 39–40.

    MATH  MathSciNet  Google Scholar 

  93. A. Suk: Disjoint edges in complete topological graphs, in: Proc. 28th Symposium on Computational Geometry (SoCG’12), ACM Press, New York, 2012, 383–386.

    Google Scholar 

  94. K. J. Swanepoel: A new proof of Vázsonyi’s conjecture, J. Combinat. Theory, Ser. A 115 (2008), 888–892.

    MATH  MathSciNet  Google Scholar 

  95. K. J. Swanepoel: Unit distances and diameters in Euclidean spaces, Discrete Comput. Geom. 41 (2009), 1–27.

    MATH  MathSciNet  Google Scholar 

  96. L. A. Székely: Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6 (1997), 353–358.

    MATH  MathSciNet  Google Scholar 

  97. G. Tardos: On distinct sums and distinct distances, Adv. Math. 180 (2003), 275–289.

    MATH  MathSciNet  Google Scholar 

  98. G. Tardos: Construction of locally plane graphs with many edges, in: Thirty Essays on Geometric Graph Theory (J. Pach, ed.), Springer, New York, 2013, 541–562.

    Google Scholar 

  99. G. Tardos and G. Tóth: Crossing stars in topological graphs, SIAM J. Discrete Math. 21 (2007), 737–749.

    MATH  MathSciNet  Google Scholar 

  100. C. Thomassen: Some remarks on Hajós’ conjecture, J. Combin. Theory, Ser. B 93 (2005), 95–105.

    MATH  MathSciNet  Google Scholar 

  101. G. Tóth: Note on geometric graphs, Journal of Combinatorial Theory, Ser. A 89 (2000), 126–132.

    MATH  Google Scholar 

  102. G. Tóth and P. Valtr: Geometric graphs with few disjoint edges, Discrete Comput. Geom. 22 (1999), 633–642.

    MATH  MathSciNet  Google Scholar 

  103. P. Turán: Egy gráfelméleti szélsőértékfeladatról, Matematikai és Fizikai Lapok 48 (1941), 436–452.

    Google Scholar 

  104. P. Valtr: Graph drawing with no k pairwise crossing edges, in: Graph Drawing, Lecture Notes in Comput. Sci. 1353, Springer, Berlin, 1997, 205–218.

    Google Scholar 

  105. P. Valtr: On geometric graphs with no k pairwise parallel edges, Discrete Comput. Geom. 19 (1998), 461–469.

    MATH  MathSciNet  Google Scholar 

  106. K. Vesztergombi: On the distribution of distances in finite sets in the plane, Discrete Math. 57 (1985), 129–145.

    MATH  MathSciNet  Google Scholar 

  107. S. Vidor: Síkgráfok és Általánosításaik, Diploma thesis, Eötvös University, Budapest, 2009.

    Google Scholar 

  108. K. Wagner: Beweis einer Abschwächung der Hadwiger-Vermutung, Math. Ann. 153 (1964), 139–141.

    MATH  MathSciNet  Google Scholar 

  109. D. R. Woodall: Thrackles and deadlock, in: Combinatorics, Proc. Conf. Comb. Math. (D. Welsh, ed.), Academic Press, London, 1971, 335–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Pach, J. (2013). The Beginnings of Geometric Graph Theory. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_17

Download citation

Publish with us

Policies and ethics