Skip to main content

Coupling Between Transcription and Alternative Splicing

  • Chapter
  • First Online:
RNA and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 158))

Abstract

The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srebrow A, Kornblihtt AR (2006) The connection between splicing and cancer. J Cell Sci 119(13):2635–2641

    Article  PubMed  CAS  Google Scholar 

  2. Muñoz MJ, Perez Santángelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano JJ, Bird G, Bentley D, Bertrand E, Kornblihtt AR (2009) DNA damage regulates alternative splicing through inhibition of RNA Polymerase II elongation. Cell 137:708–720

    Google Scholar 

  3. Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270(6):2411–2414

    PubMed  CAS  Google Scholar 

  4. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(27):470–476

    Article  PubMed  CAS  Google Scholar 

  5. Pan Q, Shai o, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing. Nat Genet 40(12):1413–1415

    Article  PubMed  CAS  Google Scholar 

  6. Ermakova EO, Nurtdinov RN, Gelfand MS (2006) Fast rate of evolution in alternative spliced coding regions of mammalian genes. BMC Genomics 7:84–93

    Article  PubMed  Google Scholar 

  7. Smith CW, Valcárcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25(8):381–388

    Google Scholar 

  8. Cáceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193

    Article  PubMed  Google Scholar 

  9. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  10. Sharp PA (1994) Split genes and RNA splicing. Cell 77(6):805–815

    Article  PubMed  CAS  Google Scholar 

  11. Kornblihtt AR, Pesce CG, Alonso CR et al (1996) The fibronectin gene as a model for splicing and transcription studies. FASEB J 10(2):248–257

    PubMed  CAS  Google Scholar 

  12. Fededa JP, Petrillo E, Gelfand MS et al (2005) A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol Cell 19(3):393–404

    Article  PubMed  CAS  Google Scholar 

  13. Lenasi T, Peterlin BM, Dovc P (2006) Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1. RNA 12(3):498–507

    Article  PubMed  CAS  Google Scholar 

  14. Romano M, Marcucci R, Baralle FE (2001) Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene. Nucleic Acids Res 29(4):886–894

    Article  PubMed  CAS  Google Scholar 

  15. Bentley D (2002) The mRNA assembly line: transcription and processing machines in the same factory. Curr Opin Cell Biol 14(3):336–342

    Article  PubMed  CAS  Google Scholar 

  16. Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17(3):251–256

    Article  PubMed  CAS  Google Scholar 

  17. Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416(6880):499–506

    Article  PubMed  CAS  Google Scholar 

  18. Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17(3):262–268

    Article  PubMed  CAS  Google Scholar 

  19. Zorio DA, Bentley DL (2004) The link between mRNA processing and transcription: communication works both ways. Exp Cell Res 296(1):91–97

    Article  PubMed  CAS  Google Scholar 

  20. Neugebauer KM (2002) On the importance of being co-transcriptional. J Cell Sci 115(Pt 20):3865–3871

    Article  PubMed  CAS  Google Scholar 

  21. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108(4):501–512

    Article  PubMed  CAS  Google Scholar 

  22. Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 2(6):754–765

    Article  PubMed  CAS  Google Scholar 

  23. Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9(2):184–190

    Article  PubMed  CAS  Google Scholar 

  24. Pandya-Jones A, Black DL (2009) Co-transcriptional splicing of constitutive and alternative exons. RNA 15:1896–1908

    Article  PubMed  CAS  Google Scholar 

  25. Bauren G, Wieslander L (1994) Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76(1):183–192

    Article  PubMed  CAS  Google Scholar 

  26. de la Mata M, Lafaille C, Kornblihtt AR (2010) First come, first served revisited: Factors affecting the same alternative splicing events have different effects on the relative rates of intron removal. RNA 16:904–912

    Article  PubMed  Google Scholar 

  27. Lazarev D, Manley JL (2007) Concurrent splicing and transcription are not sufficient to enhance splicing efficiency. RNA 13:1546–1557

    Article  PubMed  CAS  Google Scholar 

  28. Perales R, Bentley D (2009) “Cotranscriptionality”: the transcription elongation complex as a Nexus for nuclear transactions. Mol Cell 36:178–191

    Article  PubMed  CAS  Google Scholar 

  29. Alexander RD, Innocente SA, Barrass JD, Beggs JD (2010) Splicing-dependent RNA Polymerase pausing in yeast. Mol Cell 40:582–593

    Article  PubMed  CAS  Google Scholar 

  30. Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD (2008) The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15(8):819–826

    Article  PubMed  CAS  Google Scholar 

  31. Carrillo Oesterreich F, Preibisch S, Neugebauer KM (2010) Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40:571–581

    Google Scholar 

  32. Smale ST, Tjian R (1985) Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase I promoters. Mol Cell Biol 5(2):352–362

    PubMed  CAS  Google Scholar 

  33. Sisodia SS, Sollner-Webb B, Cleveland DW (1987) Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol Cell Biol 7(10):3602–3612

    PubMed  CAS  Google Scholar 

  34. McCracken S, Rosonina E, Fong N et al (1998) Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing. Cold Spring Harb Symp Quant Biol 63:301–309

    Article  PubMed  CAS  Google Scholar 

  35. Dower K, Rosbash M (2002) T7 RNA polymerase-directed transcripts are processed in yeast and link 3′ end formation to mRNA nuclear export. RNA 8(5):686–697

    Article  PubMed  CAS  Google Scholar 

  36. Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ (2006) Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 4(6):e147

    Article  PubMed  Google Scholar 

  37. Das R, Dufu K, Romney B, Feldt M, Elenko M, Reed R (2006) Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev 20(9):1100–1109

    Article  PubMed  CAS  Google Scholar 

  38. Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R (2007) SR proteins function in coupling RNAP II trancription to pre-mRNA splicing. Mol Cell 26:867–881

    Article  PubMed  CAS  Google Scholar 

  39. Misteli T, Spector DL (1999) RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 3(6):697–705

    Article  PubMed  CAS  Google Scholar 

  40. McCracken S, Fong N, Yankulov K et al (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385(6614):357–361

    Article  PubMed  CAS  Google Scholar 

  41. Zeng C, Berget SM (2000) Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol Cell Biol 20(21):8290–8301

    Article  PubMed  CAS  Google Scholar 

  42. Hirose Y, Tacke R, Manley JL (1999) Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 13(10):1234–1239

    Article  PubMed  CAS  Google Scholar 

  43. Dye MJ, Gromak N, Proudfoot NJ (2006) Exon tethering in transcription by RNA polymerase II. Mol Cell 21(6):849–859

    Article  PubMed  CAS  Google Scholar 

  44. Sims RJ 3rd, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18(20):2437–2468

    Article  PubMed  CAS  Google Scholar 

  45. Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7(8):557–567

    Article  PubMed  CAS  Google Scholar 

  46. Muñoz MJ, de la Mata M, Kornblihtt AR (2010) The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 35:497–504

    Article  PubMed  Google Scholar 

  47. Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL (2003) Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev 17(22):2765–2776

    Article  PubMed  CAS  Google Scholar 

  48. Bird G, Zorio DA, Bentley DL (2004) RNA Polymerase II Carboxy-Terminal domain phosphorylation is required for Cotranscriptional Pre-mRNA Splicing and 3′-End formation. Mol Cell Biol 24(20):8963–8969

    Article  PubMed  CAS  Google Scholar 

  49. de la Mata M, Kornblihtt AR (2006) Pol II CTD mediates SRp20 regulation of alternative splicing. Nat Struct Mol Biol 13(11):973–980

    Article  PubMed  Google Scholar 

  50. Laurencikiene J, Kallman AM, Fong N, Bentley DL, Ohman M (2006) RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 7(3):303–307

    PubMed  CAS  Google Scholar 

  51. Rosonina E, Blencowe BJ (2004) Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA 10(4):581–589

    Article  PubMed  CAS  Google Scholar 

  52. Sims RJ III, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of Trimethylated Histone H3 Lysine 4 facilitates the recruitment of transcription postinitiation factors and Pre-mRNA splicing. Mol Cell 28:665–676

    Article  PubMed  CAS  Google Scholar 

  53. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327:996–1000

    Article  PubMed  CAS  Google Scholar 

  54. Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27:406–420

    Article  PubMed  CAS  Google Scholar 

  55. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II. Mol Cell Biol 23(12):4207–4218

    Article  PubMed  CAS  Google Scholar 

  56. Cramer P, Pesce CG, Baralle FE, Kornblihtt AR (1997) Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A 94(21):11456–11460

    Article  PubMed  CAS  Google Scholar 

  57. Cramer P, Caceres JF, Cazalla D et al (1999) Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell 4(2):251–258

    Article  PubMed  CAS  Google Scholar 

  58. Auboeuf D, Honig A, Berget SM, O’Malley BW (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298(5592):416–419

    Article  PubMed  CAS  Google Scholar 

  59. Pagani F, Stuani C, Zuccato E, Kornblihtt AR, Baralle FE (2003) Promoter architecture modulates CFTR exon 9 skipping. J Biol Chem 278(3):1511–1517

    Article  PubMed  CAS  Google Scholar 

  60. Robson-Dixon ND, Garcia-Blanco MA (2004) MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb. J Biol Chem 279(28):29075–29084

    Article  PubMed  CAS  Google Scholar 

  61. Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR (2002) Transcriptional activators differ in their abilities to control alternative splicing. J Biol Chem 277(45):43110–43114

    Article  PubMed  CAS  Google Scholar 

  62. Rosonina E, Bakowski MA, McCracken S, Blencowe BJ (2003) Transcriptional activators control splicing and 3′-end cleavage levels. J Biol Chem 278(44):43034–43040

    Article  PubMed  CAS  Google Scholar 

  63. Auboeuf D, Dowhan DH, Kang YK et al (2004) Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A 101(8):2270–2274

    Article  PubMed  CAS  Google Scholar 

  64. Auboeuf D, Dowhan DH, Li X et al (2004) CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol Cell Biol 24(1):442–453

    Article  PubMed  CAS  Google Scholar 

  65. Kotovic KM, Lockshon D, Boric L, Neugebauer KM (2003) Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 23(16):5768–5779

    Article  PubMed  CAS  Google Scholar 

  66. Lacadie SA, Rosbash M (2005) Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol Cell 19(1):65–75

    Article  PubMed  CAS  Google Scholar 

  67. Gornemann J, Kotovic KM, Hujer K, Neugebauer KM (2005) Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19(1):53–63

    Article  PubMed  Google Scholar 

  68. Listerman I, Sapra AK, Neugebauer KM (2006) Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13(9):815–822

    Article  PubMed  CAS  Google Scholar 

  69. Lai MC, Teh BH, Tarn WY (1999) A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem 274(17):11832–11841

    Article  PubMed  CAS  Google Scholar 

  70. Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6(2):307–316

    Article  PubMed  CAS  Google Scholar 

  71. Guillouf C, Gallais I, Moreau-Gachelin F (2006) Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner. J Biol Chem 281(28):19145–19155

    Article  PubMed  CAS  Google Scholar 

  72. Davies RC, Calvio C, Bratt E, Larsson SH, Lamond AI, Hastie ND (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12(20):3217–3225

    Article  PubMed  CAS  Google Scholar 

  73. Nayler O, Stratling W, Bourquin JP et al (1998) SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements. Nucleic Acids Res 26(15):3542–3549

    Article  PubMed  CAS  Google Scholar 

  74. Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 21(22):7617–7628

    Article  PubMed  CAS  Google Scholar 

  75. Lin KT, Lu RM, Tarn WY (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol 24(20):9176–9185

    Article  PubMed  CAS  Google Scholar 

  76. Yuryev A, Patturajan M, Litingtung Y et al (1996) The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A 93(14):6975–6980

    Article  PubMed  CAS  Google Scholar 

  77. Young JI, Hong EP, Castle JC et al (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A. 102(49):17551–17558

    Article  PubMed  CAS  Google Scholar 

  78. Millhouse S, Manley JL (2005) The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 25(2):533–544

    Article  PubMed  CAS  Google Scholar 

  79. Sato S, Tomomori-Sato C, Parmely TJ et al (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14(5):685–691

    Article  PubMed  CAS  Google Scholar 

  80. Eperon LP, Graham IR, Griffiths AD, Eperon IC (1988) Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54(3):393–401

    Article  PubMed  CAS  Google Scholar 

  81. Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW (1998) Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 26(24):5568–5572

    Article  PubMed  CAS  Google Scholar 

  82. Kadener S, Cramer P, Nogues G et al (2001) Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J 20(20):5759–5768

    Article  PubMed  CAS  Google Scholar 

  83. Kadener S, Fededa JP, Rosbash M, Kornblihtt AR (2002) Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc Natl Acad Sci U S A 99(12):8185–8190

    Article  PubMed  CAS  Google Scholar 

  84. Nogues G, Munoz MJ, Kornblihtt AR (2003) Influence of polymerase II processivity on alternative splicing depends on splice site strength. J Biol Chem 278(52):52166–52171

    Article  PubMed  CAS  Google Scholar 

  85. de la Mata M, Alonso CR, Kadener S et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12(2):525–532

    Article  PubMed  Google Scholar 

  86. Howe KJ, Kane CM, Ares M Jr (2003) Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9(8):993–1006

    Article  PubMed  CAS  Google Scholar 

  87. Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075

    Article  PubMed  CAS  Google Scholar 

  88. Batsche E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13(1):22–29

    Article  PubMed  CAS  Google Scholar 

  89. Kornblihtt AR (2006) Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol 13(1):5–7

    Article  PubMed  CAS  Google Scholar 

  90. Schor IE, Rascovan N, Pelisch F, Alló M, Kornblihtt AR (2009) Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA 106(11):4325–4330

    Article  PubMed  CAS  Google Scholar 

  91. Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA, Klinck R, Chabot B, Kornblihtt AR (2009) Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol 16(7):717–724

    Article  PubMed  Google Scholar 

  92. Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, Rao S, Kelleher AD (2008) Closed Chromatin architecture Is induced by an RNA Duplex targeting the HIV-1 promoter region. J Biol Chem 283:23353–23363

    Article  PubMed  CAS  Google Scholar 

  93. Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13:793–797

    Article  PubMed  CAS  Google Scholar 

  94. Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  PubMed  CAS  Google Scholar 

  95. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16(9):990–995

    Article  PubMed  CAS  Google Scholar 

  96. Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcárcel J, Guigó R (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16(9):996–1001

    Article  PubMed  CAS  Google Scholar 

  97. Kolosinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41(3):376–381

    Article  Google Scholar 

  98. Yang L, Embree LJ, Hickstein DD (2000) TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol 20(10):3345–3354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of our lab and Anabella Srebrow for criticisms and helpful discussions. This work was supported by grants from the Fundación Antorchas, the Agencia Nacional de Promoción de Ciencia y Tecnología of Argentina, the European Union Network of Excellence on Alternative Splicing (EURASNET), and the University of Buenos Aires. I.E.S. and L.G.A. are recipients of fellowships from the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET). A.R.K. is a Howard Hughes Medical Institute international research scholar and a career investigator of the CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto R. Kornblihtt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schor, I.E., Gómez Acuña, L.I., Kornblihtt, A.R. (2013). Coupling Between Transcription and Alternative Splicing. In: Wu, J. (eds) RNA and Cancer. Cancer Treatment and Research, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31659-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31659-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31658-6

  • Online ISBN: 978-3-642-31659-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics